首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Two new beta-glucanase-encoding genes, EXG2 and MLG2, were isolated from the plant-pathogenic fungus Cochliobolus carbonum using polymerase chain reaction based on amino acid sequences from the purified proteins. EXG2 encodes a 46.6-kDa exo-beta1,3-glucanase and is located on the same 3.5-Mb chromosome that contains the genes of HC-toxin biosynthesis. MLG2 encodes a 26.8-kDa mixed-linked (beta1,3-beta1,4) glucanase with low activity against beta1,4-glucan and no activity against beta1,3-glucan. Specific mutants of EXG2 and MLG2 were constructed by targeted gene replacement. Strains with multiple mutations (genotypes exg1/mlg1, exg2/mlg1, mlg1/mlg2, and exg1/exg2/mlg1/mlg2) were also constructed by sequential disruption and by crossing. Total mixed-linked glucanase activity in culture filtrates of mlg1/mlg2 and exg1/exg2/mlg1/mlg2 mutants was reduced by approximately 73%. Total beta1,3-glucanase activity was reduced by 10, 54, and 96% in exg2, mlg1, and exg1/exg2/mlg1/mlg2 mutants, respectively. The quadruple mutant showed only a modest decrease in growth on beta1,3-glucan or mixed-linked glucan. None of the mutants showed any decrease in virulence.  相似文献   

2.
Particulate enzymes from suspension-cultured ryegrass (Lolium multiflorum Lam.) endosperm cells incorporated glucosyl residues from UDP-glucose and GDP-glucose into β-glucans. Three types of β-glucans were produced from UDP-glucose: 1,3-β-glucan; 1,4-β-glucan; and mixed-linkage 1,3;1,4-β-glucan. As in other systems, relatively more 1,4-β-glucan was produced from a low (10 micromolar) UDP-glucose concentration, and relatively more 1,3-β-glucan was produced from a high (1 millimolar) UDP-glucose concentration. However, in ryegrass, 1,3;1,4-β-glucan represented a major proportion of the products at both low and high UDP-glucose concentrations. The arrangement of linkages in the 1,3;1,4-β-glucan was different at the two concentrations; at the low UDP-glucose concentration, more sequences of three consecutive 1,4-linkages were produced.  相似文献   

3.
Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.  相似文献   

4.
β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of β-1,3-glucan is unknown. We functionally characterized the β-1,3-glucan synthase gene GLS1 of the maize (Zea mays) pathogen Colletotrichum graminicola, employing RNA interference (RNAi), GLS1 overexpression, live-cell imaging, and aniline blue fluorochrome staining. This hemibiotroph sequentially differentiates a melanized appressorium on the cuticle and biotrophic and necrotrophic hyphae in its host. Massive β-1,3-glucan contents were detected in cell walls of appressoria and necrotrophic hyphae. Unexpectedly, GLS1 expression and β-1,3-glucan contents were drastically reduced during biotrophic development. In appressoria of RNAi strains, downregulation of β-1,3-glucan synthesis increased cell wall elasticity, and the appressoria exploded. While the shape of biotrophic hyphae was unaffected in RNAi strains, necrotrophic hyphae showed severe distortions. Constitutive expression of GLS1 led to exposure of β-1,3-glucan on biotrophic hyphae, massive induction of broad-spectrum defense responses, and significantly reduced disease symptom severity. Thus, while β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and fast-growing necrotrophic hyphae, its rigorous downregulation during biotrophic development represents a strategy for evading β-glucan–triggered immunity.  相似文献   

5.
The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs.  相似文献   

6.
Hoson T  Nevins DJ 《Plant physiology》1989,90(4):1353-1358
Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.  相似文献   

7.
8.
9.
Deletion of GAS1/GGP1/CWH52 results in a lower β-glucan content of the cell wall and swollen, more spherical cells (L. Popolo, M. Vai, E. Gatti, S. Porello, P. Bonfante, R. Balestrini, and L. Alberghina, J. Bacteriol. 175:1879–1885, 1993; A. F. J. Ram, S. S. C. Brekelmans, L. J. W. M. Oehlen, and F. M. Klis, FEBS Lett. 358:165–170, 1995). We show here that gas1Δ cells release β1,3-glucan into the medium. Western analysis of the medium proteins with β1,3-glucan- and β1,6-glucan-specific antibodies showed further that at least some of the released β1,3-glucan was linked to protein as part of a β1,3-glucan–β1,6-glucan–protein complex. These data indicate that Gas1p might play a role in the retention of β1,3-glucan and/or β-glucosylated proteins. Interestingly, the defective incorporation of β1,3-glucan in the cell wall was accompanied by an increase in chitin and mannan content in the cell wall, an enhanced expression of cell wall protein 1 (Cwp1p), and an increase in β1,3-glucan synthase activity, probably caused by the induced expression of Fks2p. It is proposed that the cell wall weakening caused by the loss of Gas1p induces a set of compensatory reactions to ensure cell integrity.  相似文献   

10.
11.
12.
The properties of the soluble β-glucans formed during photosynthesis of the green siphonous alga Caulerpa simpliciuscula are described. There are two components in the soluble β-glucan fraction. One has an apparent degree of polymerization of 37 glucose units and the other of 270 glucose units. The β-glucan with the lower apparent molecular weight accounts for most of the mass in the β-glucan fraction and is similar in properties to soluble laminarins reported in other algal and fungal species. The β-glucan with the high apparent molecular weight contains most of the radioactivity accumulated in the β-glucan fraction during short periods of photosynthesis.  相似文献   

13.
Innate immunomodulation via induction of innate memory is one mechanism to alter the host’s innate immune response to reduce or prevent disease. Microbial products modulate innate responses with immediate and lasting effects. Innate memory is characterized by enhanced (training) or depressed (tolerance) innate immune responses, including pro-inflammatory cytokine production, to secondary exposure following a priming event. To investigate the ability of β-glucans and bacillus Calmette-Guerin to induce innate training or tolerance in pig cells, porcine monocytes were cultured with priming agonist (β-glucans or bacillus Calmette-Guerin) then re-stimulated 5 d later with a heterologous microbial agonist to determine induction of innate memory. Priming with β-glucan from Saccharomyces cerevisiae depressed IL-1β and TNF-α cytokine responses to re-stimulation with LPS, indicative of a tolerized state. However, bacillus Calmette-Guerin priming induced a trained state in porcine monocytes, as LPS re-stimulation enhanced IL-1β and TNF-α gene expression and protein production. We present the first evidence of innate memory in pig monocytes, with bacillus Calmette-Guerin (training) or Saccharomyces cerevisiae β-glucan (tolerance). Induction of a trained or tolerized state in vitro is a first step to identify agonists to alter the innate immune system at the animal level with the intent of enhancing disease resistance.  相似文献   

14.
15.
The interface between plants and pathogens plays an important role in their interaction. Studies of fungal cell walls are scarce and previous results show the existence of α-1,3-glucans in addition to ß-glucans. In addition, α-1,3-glucans are not present in plant cell walls, and α-glucanase activity in plants has not been described before. In a previous work, we purified and characterized an α-1,3-glucan from a binucleated, non-pathogenic Rhizoctonia isolate, which induces plant defence responses. Therefore, in order to study the architecture of the fungal cell wall, and the accessibility and localization of the α-glucan elicitor, we prepared an antibody against the α-1,3-glucan and analysed its localization by TEM. Immunolocalization showed the presence of the α-1,3-glucan in the intercellular spaces and along the cell walls, mainly on the inner layers. This result, and the presence of the α-1,3-glucan in the liquid culture medium in which binucleated non-pathogenic Rhizoctonia was grown, confirmed that the α-glucan had been secreted. The α-1,3-glucan was also immunocytolocalized on potato sprouts tissue elicited with the glucan; gold particles were observed in vacuoles and close to the plasmalemma. In addition, α-glucanase activity in potato sprouts was detected using cell wall glucans from the pathogenic isolate R. solani AG-3 as substrates; whereas, when cell wall glucans from non-pathogenic isolates were used, no α-glucanase activity was detected. Our results suggest that the presence of α-1,3-glucans could be associated with the formation and integrity of the cell wall and also with plant–fungi interactions. This is the first report to describe α-glucanolytic activity in plants.  相似文献   

16.
Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with β-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a β-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to β-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to β-1,3–1,4-glucans while substantially decreasing the affinity for decorated β-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified β-1,3–1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.  相似文献   

17.
Bulone V  Girard V  Fèvre M 《Plant physiology》1990,94(4):1748-1755
Enriched 1,3-β-glucan and 1,4-β-glucan synthase fractions from the fungus Saprolegnia were isolated by rate zonal centrifugation on glycerol gradient. Purification was improved by entrapment of the enzymes in their reaction product, i.e. microfibrillar glucans. 1,3-β-Glucan synthases were separated from 1,4-β-glucan synthases following resuspension of entrapped enzymes. Sodium dodecylsulfate-polyacrylamide gel electrophoresis indicated that 1,3-β-glucan and 1,4-β-glucan synthases may have a different polypeptide composition because they were enriched for different protein subunits (34, 48, and 50 kD for the 1,3-β-glucan synthase and 60 kD for the 1,4-β-glucan synthase).  相似文献   

18.
A β-glucan produced by Aureobasidium pullulans (AP-PG) is consisting of a β-(1,3)-linked main chain with β-(1,6)-linked glucose side residues. Various β-glucans consisting of β-(1,3)-linked main chain including AP-PG are believed to exhibit anti-tumor activities, and actually, anti-tumor activities of AP-PG in mice have been demonstrated. In this study, we demonstrate that stimulation with AP-PG induces TRAIL expression in mouse and human macrophage-like cell lines. TRAIL is known to be a cytokine which specifically induces apoptosis in transformed cells, but not in untransformed cells. The expression of TRAIL mRNA after stimulation with AP-PG was increased in RAW264.7 cells, Mono Mac 6 cells, and macrophage-differentiated THP-1 cells. The mRNA expression of TNF-α and FasL is only weakly increased after stimulation with AP-PG. The induction activity of TRAIL by curdlan, a bacterial β-glucan, was very similar to that by AP-PG in RAW264.7 cells, but weaker in macrophage-differentiated THP-1 cells. Activation of caspases was found in HeLa cells after treatment with the supernatant of cultured medium from AP-PG-stimulated Mono Mac 6 cells, and was inhibited by the anti-TRAIL neutralizing antibody. These findings suggest that the stimulation with AP-PG effectively induces TRAIL in macrophages, and that it may be related to apoptosis induction of tumor cells.  相似文献   

19.
Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.  相似文献   

20.
Vulvovaginal candidiasis (VVC) is among the most prevalent vaginal diseases. Candida albicans is still the most prevalent species associated with this pathology, however, the prevalence of other Candida species, such as C. glabrata, is increasing. The pathogenesis of these infections has been intensely studied, nevertheless, no consensus has been reached on the pathogenicity of VVC. In addition, inappropriate treatment or the presence of resistant strains can lead to RVVC (vulvovaginal candidiasis recurrent). Immunomodulation therapy studies have become increasingly promising, including with the β-glucans. Thus, in the present study, we evaluated microbicidal activity, phagocytosis, intracellular oxidant species production, oxygen consumption, myeloperoxidase (MPO) activity, and the release of tumor necrosis factor α (TNF-α), interleukin-8 (IL-8), IL-1β, and IL-1Ra in neutrophils previously treated or not with β-glucan. In all of the assays, human neutrophils were challenged with C. albicans and C. glabrata isolated from vulvovaginal candidiasis. β-glucan significantly increased oxidant species production, suggesting that β-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal response of neutrophils for both of the species isolated from vulvovaginal candidiasis. The effects of β-glucan appeared to be mainly related to the activation of reactive oxygen species and modulation of cytokine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号