首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal cells from the wing buds of stage 24 chick embryos undergo differentiation to cartilage when plated at high density. Treatment of these cultures with phospholipase D resulted in inhibition of chondrogenesis. Phospholipase D treatment (which produces phosphatidic acid from membrane phospholipids) was found to affect cell proliferation and to dramatically increase intracellular free calcium levels and inositol phosphate production. Intracellular free Ca2+, mobilized as a result of phosphatidylinositol phosphate hydrolysis, may therefore inhibit chondrogenesis in embryonic mesenchymal cells.  相似文献   

2.
The expression of ANK, a key player in biomineralization, is stimulated by treatment with TGFβ. The purpose of this study was to determine whether TGFβ stimulation of ANK expression during chondrogenesis was dependent upon the influx of calcium and phosphate into cells. Treatment of ATDC5 cells with TGFβ increased ANK expression during all phases of chondrogenic differentiation, particularly at day 14 (proliferation) and day 32 (mineralizing hypertrophy) of culture. Phosphate uptake studies in the presence and absence of phosphonoformic acid (PFA), a competitive inhibitor of the type III Na+/Pi channels Pit‐1 and Pit‐2, indicated that the stimulation of ANK expression by TGFβ required the influx of phosphate, specifically by the Pit‐1 transporter, at all phases of differentiation. At hypertrophy, when alkaline phosphatase is highly expressed, inhibition of its activity with levamisole also abrogated the stimulatory effect of TGFβ on ANK expression, further illustrating that Pi availability and uptake by the cells is necessary for stimulation of ANK expression in response to TGFβ. Since previous studies of endochondral ossification in the growth plate have shown that L‐type calcium channels are essential for chondrogenesis, we investigated their role in the TGFβ‐stimulated ANK response in ATDC5 cells. Treatment with nifedipine to inhibit calcium influx via the L‐type channel Cav1.2 (α1C) inhibited the TGFβ stimulated increase in ANK expression at all phases of chondrogenesis. Our findings indicate that TGFβ stimulation of ANK expression is dependent upon the influx of phosphate and calcium into ATDC5 cells at all stages of differentiation. J. Cell. Physiol. 224: 540–548, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Abstract. Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 times 106 cells/ml) were exposed to different doses of BBE (0–01-1-0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2–30 times 106 cells/ml), on cultures of ‘young’ limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or ‘young’ limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.  相似文献   

4.
The quadratojugal (QJ) is a neural crest-derived membrane bone in the maxillary region of the avian head.In vivoits periosteum undergoes both osteogenesis to form membrane bone and chondrogenesis to form secondary cartilage. This bipotential property, which also exists in some other membrane bones, is poorly understood. The present study used cell culture to investigate the differentiation potential of QJ periosteal cells. Three cell populations were enzymatically released from QJ periostea and plated at different densities. Cell density greatly affected phenotypic expression and differentiation pathways. We found two culture conditions that favored osteogenesis and chondrogenesis, respectively. In micromass culture, the periosteal cells produced a layer of osteogenic cells that expressed alkaline phosphatase (APase) and secreted bony extracellular matrix (ECM). In contrast, low-density monolayer culture elicited chondrogenesis. Cells with pericellular refractile ECM and round shape appeared at 7 to 8 days and formed colonies later. The chondrogenic phenotype of these cells was confirmed by immunolocalization of type II collagen and Alcian blue staining of ECM. This result demonstrated that a fully expressed chondrogenic phenotype can be achieved from membrane bone periosteal cells in primary monolayer culture. Chondrogenesis requires a cell density lower than confluence and cannot be initiated in confluent cultures. Among the three cell populations, those cells from the outer layer have the highest growth rate and require the lowest initial plating density (below 5 × 103cells/ml) to achieve chondrogenesis. Cells from the inner layer have the slowest growth rate and chondrify at the highest initial density (below 5 × 104cells/ml). Chondrocytes from all populations express distinct phenotypic markers—APase and type I collagen—from initial chondrogenesis, but are not hypertrophic morphologically. Furthermore, the fact that chondrocytes arise within the same colony as APase-positive polygonal cells suggests that chondrocytes may differentiate from precursors related to the osteogenic cell lineage. This cell culture approach mimics secondary cartilage and membrane bone formationin vivo.  相似文献   

5.
Repair of damaged cartilage usually requires replacement tissue or substitute material. Tissue engineering is a promising means to produce replacement cartilage from autologous or allogeneic cell sources. Scaffolds provide a three-dimensional (3D) structure that is essential for chondrocyte function and synthesis of cartilage-specific matrix proteins (collagen type II, aggrecan) and sulfated proteoglycans. In this study, we assessed porous, 3D collagen sponges for in vitro engineering of cartilage in both standard and serum-free culture conditions. Bovine articular chondrocytes (bACs) cultured in 3D sponges accumulated and maintained cartilage matrix over 4 weeks, as assessed by quantitative measures of matrix content, synthesis, and gene expression. Chondrogenesis by bACs cultured with Nutridoma as a serum replacement was equivalent or better than control cultures in serum. In contrast, chondrogenesis in insulin-transferrin-selenium (ITS+3) serum replacement cultures was poor, apparently due to decreased cell survival. These data indicate that porous 3D collagen sponges maintain chondrocyte viability, shape, and synthetic activity by providing an environment favorable for high-density chondrogenesis. With quantitative assays for cartilage-specific gene expression and biochemical measures of chondrogenesis in these studies, we conclude that the collagen sponges have potential as a scaffold for cartilage tissue engineering.  相似文献   

6.
Studies of neural, hepatic, and other cells have demonstrated thatin vitroethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformitiesin vivo,prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23–25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant ofin vitrochondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in35SO4incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol onin vitrochondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.  相似文献   

7.
Vitamin D sterol administration, a traditional treatment for secondary hyperparathyroidism, may increase serum calcium and phosphorus, and has been associated with increased vascular calcification (VC). In vitro studies suggest that in the presence of uremic concentrations of phosphorus, vitamin D sterols regulate gene expression associated with trans‐differentiation of smooth muscle cells (SMCs) to a chondro/osteoblastic cell type. This study examined effects of vitamin D sterols on gene expression profiles associated with phosphate‐enhanced human coronary artery SMC (CASMC) calcification. Cultured CASMCs were exposed to phosphate‐containing differentiation medium (DM) with and without calcitriol, paricalcitol, or the calcimimetic R‐568 (10?11–10?7 M) for 7 days. Calcification of CASMCs, determined using colorimetry following acid extraction, was dose dependently increased (1.6‐ to 1.9‐fold) by vitamin D sterols + DM. In contrast, R‐568 did not increase calcification. Microarray analysis demonstrated that, compared with DM, calcitriol (10?8 M) + DM or paricalcitol (10?8 M) + DM similarly and significantly (P < 0.05) regulated genes of various pathways including: metabolism, CYP24A1; mineralization, ENPP1; apoptosis, GIP3; osteo/chondrogenesis, OPG, TGFB2, Dkk1, BMP4, BMP6; cardiovascular, HGF, DSP1, TNC; cell cycle, MAPK13; and ion channels, SLC22A3 KCNK3. R‐568 had no effect on CASMC gene expression. Thus, SMC calcification observed in response to vitamin D sterol + DM may be partially mediated through targeting mineralization, apoptotic, osteo/chondrocytic, and cardiovascular pathway genes, although some gene changes may protect against calcification. Further studies to determine precise roles of these genes in development of, or protection against VC and cardiovascular disease are required. J. Cell. Biochem. 111: 911–921, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.

Purpose

The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using 1H nuclear magnetic resonance (NMR) spectroscopy.

Materials and Methods

hMSCs (2×106 cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra.

Results

During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs.

Conclusions

In this study, we confirm that metabolomic changes detected by 1H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation.  相似文献   

9.
The phosphorylation of the sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) plays a key role in the regulation of renal phosphate transport by parathyroid hormone (PTH) and dopamine. Ser77 in the first PDZ domain of NHERF-1 is a downstream target of both hormones. The current experiments explore the role of Thr95, another phosphate acceptor site in the PDZ I domain, on hormone-mediated regulation of phosphate transport in the proximal tubule of the kidney. The substitution of alanine for threonine at position 95 (T95A) significantly decreased the rate and extent of in vitro phosphorylation of Ser77 by PKC. In NHERF-1-null proximal tubule cells, neither PTH nor dopamine inhibited sodium-dependent phosphate transport. Infection of the cells with adenovirus expressing full-length WT GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of both PTH and dopamine. Infection with full-length NHERF-1 containing a T95A mutation, however, increased basal phosphate transport but not the responsiveness to either hormone. As determined by surface plasmon resonance, the substitution of serine for aspartic acid (S77D) in the PDZ I domain decreased the binding affinity to the sodium-dependent phosphate transporter 2a (Npt2a) as compared with WT PDZ I, but a T95D mutation had no effect on binding. Finally, cellular studies indicated that both PTH and dopamine treatment increased the phosphorylation of Thr95. These studies indicate a remarkable cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. The phosphorylation of Thr95 facilitates the phosphorylation of Ser77. This, in turn, results in the dissociation of NHERF-1 from Npt2a and a decrease in phosphate transport in renal proximal tubule cells.  相似文献   

10.
This research studied the effects of inorganic nutrient removal by free and immobilized Scenedesmus bijugatus cells, measured by algal growth (i.e., the chlorophyll a concentration) and the efficiency of the uptake of inorganic nutrients by the cells (uptake rate (b) and removal percentage) in water samples from the organically polluted Pinang River estuary (PRE). Water samples from the PRE were collected during low and high tide. S. bijugatus cells had a higher growth rate when incubated in low tide PRE water samples compared to high tide PRE water samples, with a growth rate of 0.29 µgml?1d?1 and 0.06 µgml?1d?1 for free and immobilized cells, respectively. S. bijugatus was able to more efficiently remove nitrogen, especially ammonium (81–94%), compared to phosphate (62–88%) from both low and high tide water samples. S. bijugatus cells in low tide PRE water samples recorded highest phosphate (0.36 mgL?1d?1 and 0.25 mgL?1d?1 for free and immobilized cells, respectively) and ammonium uptake rates (0.44 mgL?1d?1 and 0.29 mgL?1d?1 for free and immobilized cells respectively). Both inorganic nutrient removal and microalgal cell growth were not significantly different between free and immobilized S. bijugatus (p > 0.05). The data obtained indicated that the removal of nutrients by microalgae was affected by salinity and the immobilization technique applied may have good potential for bioremediation.  相似文献   

11.
12.
One of the initial events required for the expression of cartilage-specific macromolecules in monolayer cultures is the reversion to the initial round shape of chondrocytes. Thus, considerable research efforts have focused on developing reliable procedures to maintain a round morphology of cultured chondrocytes. Our study focuses on evaluating the response of dedifferentiated fetal rat chondrocytes to cytochalasin D, an actin-disrupting agent, with special emphasis on the morphological events. Immediately after exposure to the drug, cells round up but flatten again after removing the agent. However, immunocytochemical procedures revealed a disorganization of microfilaments and intermediate filaments. Phase-contrast and scanning electron microscopic observations revealed that on day 6 of culture, cells located at the top of the cell layer adopted a spherical morphology. Prominent differences were noted in control cultures where cells had to aggregate prior to overt chondrogenesis. Transmission electron microscopy confirmed the round morphology of the cells situated at the top layer but also revealed the presence of cell contacts between the cells. In addition, cells located at the central part of the cell layer displayed a typical morphology of mature chondrocytes, separated by an extensive extracellular matrix. These morphological changes occurred parallel to the expression of type II collagen and chondroitin sulfate, both hallmarks of the chondrocyte phenotype strong in experimental cultures, relatively weak in control cultures, and only restricted on areas of polygonal cellular aggregates. Furthermore, [35S]-sulfate incorporation into sulfated glycosaminoglycans increased rapidly with the period of culture to a maximum after 7 days and was then two-fold in treated cultures. Taken together, these findings indicated that cytochalasin D stimulates chondrogenesis in response to modification of cytoskeleton architecture and the subsequent rounding up of the cells.  相似文献   

13.
Disruption of the actin cytoskeleton in subconfluent mesenchymal cells induces chondrogenic differentiation via protein kinase C (PKC) alpha signaling. In this study, we investigated the role of p38 mitogen-activated protein (MAP) kinase in the chondrogenic differentiation of mesenchymal cells that is induced by depolymerization of the actin cytoskeleton. Treatment of mesenchymal cells derived from chick embryonic limb buds with cytochalasin D (CD) disrupted the actin cytoskeleton with concomitant chondrogenic differentiation. The chondrogenesis was accompanied by an increase in p38 MAP kinase activity and inhibition of p38 MAP kinase with SB203580 blocked chondrogenesis. Together these results suggest an essential role for p38 MAP kinase in chondrogenesis. In addition, inhibition of p38 MAP kinase did not alter CD-induced increased expression and activity of PKC alpha, whereas down-regulation of PKC by prolonged exposure of cells to phorbol ester inhibited CD-induced p38 MAP kinase activation. Our results therefore suggest that PKC is involved in the regulation of chondrogenesis induced by disruption of the actin cytoskeleton via a p38 MAP kinase signaling pathway.  相似文献   

14.
Summary Roquefortine synthesis with free and Ca-alginate immobilized Penicillium roqueforti cells was investigated under different culture conditions. Decreasing Ca-alginate concentration was related to increasing roquefortine production; free cells gave the best results. Formation of roquefortine was three times higher with mannitol and succinate than with sucrose as the carbon source; phosphate inhibited its biosynthesis in free cells by 23% to 32%. Relationships between cell density, 14C-tryptophan content of cells and roquefortine synthesis were shown. The special morphology of immobilized mycelia was demonstrated.  相似文献   

15.
Cartilage repair by mesenchymal stem cells (MSCs) often occurs in diseased joints in which the inflamed microenvironment impairs chondrogenic maturation and causes neocartilage degradation. In this environment, melatonin exerts an antioxidant effect by scavenging free radicals. This study aimed to investigate the anti-inflammatory and chondroprotective effects of melatonin on human MSCs in a proinflammatory cytokine-induced arthritic environment. MSCs were induced toward chondrogenesis in the presence of interleukin-1 β (IL-1β) or tumor necrosis factor α (TNF-α) with or without melatonin. Levels of intracellular reactive oxygen species (ROS), hydrogen peroxide, antioxidant enzymes, and cell viability were then assessed. Deposition of glycosaminoglycans and collagens was also determined by histological analysis. Gene expression of chondrogenic markers and matrix metalloproteinases (MMPs) was assessed by real-time polymerase chain reaction. In addition, the involvement of the melatonin receptor and superoxide dismutase (SOD) in chondrogenesis was investigated using pharmacologic inhibitors. The results showed that melatonin significantly reduced ROS accumulation and increased SOD expression. Both IL-1β and TNF-α had an inhibitory effect on the chondrogenesis of MSCs, but melatonin successfully restored the low expression of cartilage matrix and chondrogenic genes. Melatonin prevented cartilage degradation by downregulating MMPs. The addition of luzindole and SOD inhibitors abrogated the protective effect of melatonin associated with increased levels of ROS and MMPs. These results demonstrated that proinflammatory cytokines impair the chondrogenesis of MSCs, which was rescued by melatonin treatment. This chondroprotective effect was potentially correlated to decreased ROS, preserved SOD, and suppressed levels of MMPs. Thus, melatonin provides a new strategy for promoting cell-based cartilage regeneration in diseased or injured joints.  相似文献   

16.
17.
18.
While human mesenchymal stem cells (hMSCs), either in the bone marrow or in tumour microenvironment could be targeted by radiotherapy, their response is poorly understood. The oxic effects on radiosensitivity, cell cycle progression are largely unknown, and the radiation effects on hMSCs differentiation capacities remained unexplored. Here we analysed hMSCs viability and cell cycle progression in 21% O2 and 3% O2 conditions after medical X-rays irradiation. Differentiation towards osteogenesis and chondrogenesis after irradiation was evaluated through an analysis of differentiation specific genes. Finally, a 3D culture model in hypoxia was used to evaluate chondrogenesis in conditions mimicking the natural hMSCs microenvironment. The hMSCs radiosensitivity was not affected by O2 tension. A decreased number of cells in S phase and an increase in G2/M were observed in both O2 tensions after 16 hours but hMSCs released from the G2/M arrest and proliferated at day 7. Osteogenesis was increased after irradiation with an enhancement of mRNA expression of specific osteogenic genes (alkaline phosphatase, osteopontin). Osteoblastic differentiation was altered since matrix deposition was impaired with a decreased expression of collagen I, probably through an increase of its degradation by MMP-3. After induction in monolayers, chondrogenesis was altered after irradiation with an increase in COL1A1 and a decrease in both SOX9 and ACAN mRNA expression. After induction in a 3D culture in hypoxia, chondrogenesis was altered after irradiation with a decrease in COL2A1, ACAN and SOX9 mRNA amounts associated with a RUNX2 increase. Together with collagens I and II proteins decrease, associated to a MMP-13 expression increase, these data show a radiation-induced impairment of chondrogenesis. Finally, a radiation-induced impairment of both osteogenesis and chondrogenesis was characterised by a matrix composition alteration, through inhibition of synthesis and/or increased degradation. Alteration of osteogenesis and chondrogenesis in hMSCs could potentially explain bone/joints defects observed after radiotherapy.  相似文献   

19.
Summary Mesenchyme cells derived from embryonic rat limb buds cultured at high density differentiated into chondrocytes. The degree of chondrogenesis was assessed by alcian blue staining, a stain specific for cartilage matrix. The addition of retinoic acid on day 1 of culture inhibited chondrogenesis in a dose-dependent fashion. When retinoic acid was added to the cultures on day 5, the cartilage nodules, consisting of newly differentiated cartilage cells, disappeared during the following 6 days. Coinciding with this process the histochemically demonstrable alkaline phosphatase activity, localized in the internodular areas, also disappeared. This indicated that retinoic acid not only inhibited chondrogenesis but also induced resorption of cartilage cells and that at least two cell types were affected, the cartilage cells and the cells bearing alkaline phosphatase.Actinomycin D and cycloheximide, inhibitors of RNA and protein synthesis, suppressed the retinoic acid effect in day 5 limb bud cell cultures. This result indicated that the effect of retinoic acid required RNA and protein synthesis and is compatible with the view that vitamin A may act in a hormone-like way.  相似文献   

20.
Summary In an effort to establish a more chemically defined culture system to study the regulation of chondrogenic differentiation in vitro, two commercially available serum replacements, NuSerum and NuSerum IV, were tested on embryonic limb mesenchyme. Limb bud (LB) mesenchymal cells were isolated from Hamilton-Hamburger stage 23–24 chick embryos and plated at various densities (1, 5, 10, or 20 × 106 cells/ml) in micromass culture for 4 days in media supplemented with 10% fetal bovine serum (FBS), NuSerum or NuSerum IV. Cell growth was assessed by the incorporation of [3H]leucine and [3H]thymidine. Chondrogenesis was determined by the incorporation of [35S]sulfate and by the number of Alcian blue-staining cartilage nodules. In high density (20 × 106 cells/ml) cultures, which favored chondrogenic differentiation, both serum replacements supported protein synthesis and chondrogenesis equally well as FBS. In cultures plated at 5 × 106 cells/ml, a cell density in which was chondrogenesis-limiting, both NuSerum and NuSerum IV significantly enhanced incorporation of [35S]sulfate (2.6-fold), [3H]leucine (1.4-fold), and [3H]thymidine (1.9-fold), compared to FBS. Enhancement of chondrogenesis was also apparent by the increases in the number of Alcian blue-staining cartilage nodules and the ratio of sulfate: leucine incorporation in cultures plated at 5 × 106 cells/ml. Interestingly, the localization of cartilage nodules was extended out to the periphery of micromass cultures fed with NuSerum or NuSerum IV. The observed effects of NuSerum and NuSerum IV may be attributed to a combination of factors, including lower concentrations of serum and its associated proteins, as well as supplemented growth factors and hormones known to promote cell proliferation and differentiation. Therefore, NuSerum and NuSerum IV are excellent, low-cost replacements for FBS in maintaining cellular growth and promoting chondrogenesis in LB mesenchymal cell cultures in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号