首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a 3-day water deprivation were studied in adult female rats in order to know what are the different zones of the adrenal gland and the hormonal factors involved in the growth and the activity of the adrenal gland. Water deprivation significantly increased plasma renin activity (PRA), plasma Angiotensin II (AII), vasopressin (AVP), epinephrine, aldosterone and corticosterone concentrations but did not modify the plasma adrenocorticotropin hormone (ACTH) level. Water deprivation significantly increased the absolute weight of the adrenal capsule containing the zona glomerulosa without modification of the density of cells per area unit suggesting that the growth of the adrenal capsule was due to a cell hyperplasia of the zona glomerulosa. Water deprivation significantly increased the density of AII type 1 (AT1) receptors in the adrenal capsule but did not modify the density of AII type 2 (AT2) receptors in the adrenal capsule and core containing the zona fasciculata, the zona reticularis and the medulla. The treatment of dehydrated female rats with captopril, which inhibits the angiotensin converting enzyme (ACE) in order to block the production of AII, significantly decreased the absolute weight of the adrenal capsule, plasma aldosterone and the density of AT1 receptors in the adrenal capsule. The concentration of corticosterone in the plasma, the density of AT2 receptors and the density of cells per unit area in the zona glomerulosa of the adrenal capsule were not affected by captopril-treatment. In conclusion, these results suggest that AII seems to be the main factor involved in the stimulation of the growth and the secretion of aldosterone by the adrenal capsule containing the zona glomerulosa during water deprivation. The low level of plasma ACTH is not involved in the growth of the adrenal gland but is probably responsible for the secretion of corticosterone by the zona fasciculata.  相似文献   

2.
A bolus IV injection of endothelin-1 (ET-1) (0.5 microgram.kg-1) decreased PRA, without affecting plasma aldosterone (A) concentration. ET-1 exerted a dose-dependent stimulation of basal secretion of A and corticosterone (B) by dispersed zona glomerulosa (ZG) cells, while it did not affect B production by inner adrenocortical cells. ET-1 notably enhanced the secretory response of dispersed ZG cells to a maximal effective concentration of ACTH, but not of either angiotensin II (ANG-II) or potassium. The conclusion is drawn that ET-1 acutely stimulates ZG in rats, by a mechanism probably similar to that underlying the adrenoglomerulotropic actions of ANG-II and potassium.  相似文献   

3.
Dispersed chicken adrenocortical cells were preincubated with atrial natriuretic peptide (rANP), sodium nitroprusside (SNP) or 8-bromo cyclic GMP, followed by incubations with ACTH, chicken PTH, cholera toxin or various steroid intermediates of aldosterone production. Cyclic AMP production and aldosterone secretion were evaluated, in order to determine the sites of ANP inhibition in the sequence of events leading to aldosterone secretion. Dose-dependent inhibitory effects on ACTH-stimulated aldosterone secretion by rANP and SNP were observed. Both agents appeared to stimulate cGMP production by the particulate fraction of the avian adrenocortical cells. Aldosterone production, stimulated by cyclic AMP agonists such as ACTH, chicken PTH and cholera toxin, was significantly inhibited by ANP. On the other hand, ANP did not interfere with production or degradation of cAMP. Each of the aldosterone intermediates--pregnenolone, progesterone, 11-deoxycorticosterone and corticosterone--promoted aldosterone production when included in the incubation media. Atrial natriuretic peptide and SNP inhibited aldosterone secretion when enhanced by the intermediates, by about 40-60%, but the ACTH-stimulated secretion was inhibited by over 90%. The results suggest two sites of inhibition by ANP in the pathway of aldosterone synthesis and secretion: synthesis of cholesterol or pregnenolone, and conversion of corticosterone to aldosterone. The inhibition by 8-bromo cGMP of aldosterone secretion and the similar sites of inhibition for ANP and SNP suggest that cyclic GMP mediates the inhibition in both cases.  相似文献   

4.
Nitric oxide (NO) is a major signaling molecule and biological mediator of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the role of NO formed by endothelial (e), neuronal (n) and inducible (i) nitric oxide synthase (NOS) in the stimulatory effect of nicotine on the HPA axis in rats under basal conditions. Also possible interaction of NOS systems with endogenous prostaglandins (PG) in that stimulation was assessed. NOS and cyclooxygenase inhibitors were administered i.p. 15 min prior to nicotine (2, 5 mg/kg i.p.). Plasma ACTH and serum corticosterone levels were measured 1 h after nicotine injection. NOS blockers given alone did not markedly affect the resting ACTH and corticosterone levels. L-NAME (2-10 mg/kg), a broad spectrum NOS inhibitor considerably and dose dependently enhanced the nicotine-induced ACTH and corticosterone secretion. L-NNA (2 mg/kg) and 7-nitroindazole (7-NI 20 mg/kg), neuronal NOS inhibitors in vivo also significantly augmented the nicotine-induced ACTH and corticosterone levels. L-arginine greatly impaired the nicotine-induced hormone responses and reversed the L-NNA elicited enhancement of the nicotine-evoked ACTH and corticosterone response. In contrast to the constitutive eNOS and nNOS antagonists, an inducible NOS antagonist guanethidine (50-100 mg/kg i.p.) did not substantially affect the nicotine-elicited pituitary-adrenocortical responses. Indomethacin (2 mg/kg i.p.), a non-selective cyclooxygenase blocker abolished the L-NAME and L-NNA-induced enhancement of the nicotine-evoked ACTH and corticosterone response. These results indicate that NO is an inhibitory mediator in the HPA axis activity. Inhibition of its generation by eNOS and nNOS significantly enhances the nicotine-induced HPA response. Under basal conditions iNOS is not involved in the nicotine-induced ACTH and corticosterone secretion. Prostaglandins play an obligatory role in the response of HPA axis to systemic nicotine administration.  相似文献   

5.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

6.
VIP dose-dependently increased basal, but not submaximally ACTH (10−10 M)-stimulated, aldosterone (ALDO) and corticosterone (B) secretion of dispersed rat capsular and inner adrenocortical cells, respectively. The maximal stimulatory effect (60–70% rise) was obtained with a VIP concentration of 10−8 M. [4-Cl-D-Phe6,Leu17]-VIP, a VIP-receptor antagonist (VIP-A), and corticotropin inhibiting peptide (CIP), an ACTH receptor antagonist (both 10−6 M), completely annulled VIP (10−8M)-evoked rises in basal ALDO and corticosterone secretions. The ACTH (10−10 M)-enhanced (about 5-fold) production of both hormones was completely reversed by CIP (10−6 M) and only partially reduced (about −30%) by VIP-A (10−6 M). The hypothesis is advanced that the weak secretagogue effect of VIP on dispersed rat capsular and inner adrenocortical cells may be due to its positive interaction with ACTH receptors.  相似文献   

7.
This study was designed to determine the role of endogenous prostaglandins (PG) and nitric oxide (NO) in the lipopolysaccharide (LPS)-induced ACTH and corticosterone secretion in conscious rats. LPS (0.5 and 1 mg/kg) given i.p. stimulated the hypothalamic-pituitary-adrenocortical (HPA) activity measured 2 h later. A non-selective cyclooxygenase inhibitor indomethacin (10 mg/kg i.p.), piroxicam (2 mg/kg i.p.), a more potent antagonist of constitutive cyclooxygenase (COX-1) and compound NS-398 (2 mg/kg i.p.), a selective inhibitor of inducible cyclooxygenase (COX-2) given 30 min before LPS (1 mg/kg i.p.) significantly diminished both the LPS-induced ACTH and corticosterone secretion. COX-2 blocker was the most potent inhibitor of ACTH secretion (72.3%). Nomega-nitro-L-arginine methyl ester (L-NAME 2 and 10 mg/kg i.p.), a non-selective nitric oxide synthase (NOS) blocker given 15 min before LPS did not substantially alter plasma ACTH and corticosterone levels 2 h later. Aminoguanidine (AG 100 mg/kg i.p.), a selective inducible nitric oxide synthase (iNOS) inhibitor, considerably enhanced ACTH and corticosterone secretion induced by a lower dose (0.5 mg/kg) of LPS and did not significantly alter this secretion after a larger dose (1 mg/kg) of LPS. L-NAME did not markedly affect the indomethacin-induced inhibition of ACTH and corticosterone response. By contrast, aminoguanidine abolished the indomethacin-induced reduction of ACTH and corticosterone secretion after LPS. These results indicate an opposite action of PG generated by cyclooxygenase and NO synthesized by iNOS in the LPS-induced HPA-response.  相似文献   

8.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

9.
It has been suggested that adrenergic agents might modulate the L-arginine-NO pathway. Sympathomimetic agonists enhance the basal release of NO, and noradrenaline increases the synthesis of nitric oxide synthase (NOS) in the medial basal hypothalamus in vitro. In the present study possible involvement of NO in central stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by adrenergic agents was investigated in conscious rats. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME 2 and 10 microg) was administered intracerebroventricularly (i.c.v.) 15 min before the adrenergic agonist given by the same route; 1 h later the rats were decapitated. Plasma levels of ACTH and corticosterone were measured. L-NAME significantly diminished the ACTH and corticosterone response to phenylephrine (30 microg), an alpha1-adrenergic receptor agonist. These hormone responses to clonidine (10 microg), an alpha2-receptor agonist, were dose-dependently suppressed or totally abolished by L-NAME. A significant rise in the ACTH and corticosterone secretion induced by isoprenaline (10 microg), a beta-adrenergic receptor agonist, was only moderately diminished by pretreatment with L-NAME. These results indicate that NOS is considerably involved in central stimulation of the HPA axis by alpha1- and alpha2-adrenergic receptor agonists, and that NO mediates the stimulatory action of these agonists on ACTH and corticosterone secretion. The stimulation induced by beta-adrenergic receptors is only moderately affected by endogenous NO.  相似文献   

10.
Dispersed chick adrenal cells were incubated with either ACTH, cholera toxin or forskolin. All three agents stimulated cyclic AMP accumulation and secretion of corticosterone and aldosterone by the dispersed cells. The dose-response to ACTH was similar for cyclic AMP and corticosterone but aldosterone secretion appeared to be more sensitive to ACTH stimulation. Concentrations higher than 10(-8) M of ACTH caused suppression of corticosterone output but not of cyclic AMP accumulation or aldosterone secretion. A significant cyclic AMP accumulation occurred within 30 min of exposure to ACTH whereas significant increases in steroid secretion were observed only after 30 min. An early increase (within 30 min) in cyclic AMP accumulation with both cholera toxin and forskolin was not accompanied by any significant stimulation of steroid secretion, which occurred only after 120 min. The results with the avian adrenal cells are consistent with the thesis that steroid production in the adrenocortical cells is stimulated by cyclic AMP-dependent pathways, whereas steroid release may be modulated by others.  相似文献   

11.
In vitro aldosterone, deoxycorticosterone, corticosterone and cortisol production of human adrenocortical cells derived from adenomas (Conn's syndrome, Cushing's syndrome), from hyperplastic adrenals (Cushing's syndrome) and from adrenals surrounding aldosteronoma are described. Cells from adenomas causing either Cushing's syndrome or Conn's syndrome harboured the highest basal and ACTH-stimulated corticosteroid production. Adrenocortical cells derived from micronodular hyperplasia causing Cushing's syndrome and cells from cortisol producing adenoma displayed predominantly cortisol and corticosterone secretion both under basal conditions and following stimulation with ACTH. Aldosteronoma cells showed highly variable aldosterone, deoxycorticosterone, corticosterone and cortisol response to ACTH. However, in aldosteronoma cell suspensions, the basal and ACTH-stimulated ratios of aldosterone to cortisol were increased when compared to ratios of steroids produced by cells from other adrenal tissues. Chronic treatment with spironolactone of patients with Conn's syndrome before surgery was associated with a decreased ratio of aldosterone to corticosterone, revealing that 18-hydroxylase in aldosteronoma cells may be inhibited during long-term therapy. Non-tumorous cells isolated from adrenals surrounding aldosteronoma displayed less aldosterone prior to and after stimulation with ACTH than aldosteronoma cells.  相似文献   

12.
The aim of the present study was to determine the effect of social crowding stress and significance of nitric oxide (NO) and prostaglandins (PG) generated by constitutive and inducible nitric oxide synthase (NOS) and cyclooxygenase (COX) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic receptor agonist carbachol. Inhibitors of neuronal NOS (nNOS) L-NNA, general NOS L-NAME and inducible NOS (iNOS) aminoguanidine, as well as inhibitors of COX-1, piroxicam, and COX-2, compound NS-398 were administered 15 min prior to carbachol to control or crowded rats (24 rats in cage for 7, during 3 and 7 days). In stressed rats L-NAME, L-NNA and aminoguanidine significantly intensified the carbachol-induced ACTH and corticosterone secretion, like in control rats. Piroxicam, markedly decreased the carbachol-induced ACTH and corticosterone response under either basal or stress conditions. Compound NS-398 did not markedly alter the carbachol-induced HPA response in control and stressed rats. Crowding stress (3 days) significantly impaired the i.c.v. prostaglandin E(2)-induced ACTH response. Corticotropin releasing hormone (CRH) receptor antagonists, alpha-helical CRH [9-14], given i.c.v. did not alter the PGE(2)-evoked corticosterone response in either control or stressed rats, indicating that hypothalamic CRH is not involved in the PGE(2)-induced central stimulation of HPA axis. In control rats L-NAME considerably enhanced, while L-arginine, a physiological NOS substrate, abolished the PGE(2)-induced ACTH and corticosterone response. In stressed rats this NOS blocker significantly increased and L-Arg reduced the stimulatory effect of PGE(2) on ACTH and corticosterone secretion. The carbachol-induced corticosterone response was significantly increased by pretreatment with nNOS inhibitor L-NNA and was considerably reduced by indomethacin, a general COX inhibitor. Pretreatment with both antagonists left the carbachol-induced corticosterone level unchanged, suggesting an independent and reciprocal effect of NO and PG in the cholinergic stimulation of pituitary-adrenocortical response. These results indicate that in the stimulatory action of muscarinic agonist, carbachol, NO is an inhibitory transmitter under basal and crowding stress conditions. This psychosocial stress does not functionally affect the NOS/NO systems. Prostaglandins are involved in the cholinergic muscarinic-induced stimulation of HPA response to a significant extent in non-stressed rats. PGE(2) may be involved in the carbachol-elicited HPA response under basal and stress conditions. Prostaglandins released in response to muscarinic stimulation did not evoke the hypothalamic CRH mediation. NO significantly impairs and PG stimulates the carbachol-induced HPA response in rats under basal and social stress conditions.  相似文献   

13.
Orexins-A and B are two novel hypothalamic peptides, which, like leptin and neuropeptide-Y (NPY), are involved in the central regulation of feeding. Since leptin and NPY were found to modulate adrenal function, we have examined whether orexins are able to directly affect rat adrenal steroid secretion. Both orexin-A and orexin-B raised basal corticosterone secretion of dispersed rat zona fasciculata–reticularis (ZF/R) cells, their maximal effective concentration being 10−8 M. In contrast, orexins did not affect either maximally ACTH (10−9 M)-stimulated corticosterone production by ZF/R cells or the basal and agonist-stimulated aldosterone secretion of dispersed zona glomerulosa cells. The ACTH-receptor antagonist corticotropin-inhibiting peptide (10−6 M) annulled corticosterone response of ZF/R cells to ACTH (10−9 M), but not to orexins (10−8 M). Orexins (10−8 M) enhanced cyclic-AMP release by ZF/R cells, and the selective inhibitor of protein-kinase A (PKA) H-89 (10−5 M) abolished corticosterone responses to both ACTH (10−9 M) and orexins (10−8 M). A subcutaneous injection of both orexins (5 or 10 nmol/kg) evoked a clear-cut increase in the plasma concentration of corticosterone (but not aldosterone), the effect of orexin-A being significantly more intense than that of orexin-B. Collectively, these findings suggest that orexins exert a selective and direct glucocorticoid secretagogue action on the rat adrenals, acting through a receptor-mediated activation of the adenylate cyclase/PKA-dependent signaling pathway.  相似文献   

14.
The influence of extracellular calcium concentration on the steroidogenic response to ACTH and to the angiotensin II analogue [Sar1-Val5]AII has been studied in the frog, using a perfusion system technique. The release of corticosterone and aldosterone in the effluent medium was measured by specific radioimmunoassays. In calcium-free medium the stimulatory effect of ACTH (10(-9) M) was completely abolished whereas the response to dbcAMP (5 mM) was unchanged indicating that the role of calcium takes place before the formation of cAMP. Conversely, in the absence of calcium, angiotensin II (10(-7) M) was still able to stimulate corticosterone and aldosterone production. Addition of Co2+ (4 mM), a calcium antagonist, to the perfusion medium, inhibited partially the response of adrenal tissue to ACTH, dbcAMP and angiotensin. The voltage-dependent calcium channel blocker verapamil (10(-6) induced a dose-related inhibition of the corticotropic effect of ACTH. At the higher dose (10(-4) M), verapamil totally inhibited the stimulation of corticosterone and aldosterone production induced by ACTH. By contrast, at the same dose it did not alter the stimulatory effect of forskolin (2.4 X 10(-7)M) on corticosterone output, but significantly diminished forskolin-induced aldosterone response. Similarly, angiotensin-stimulated corticosterone production was slightly inhibited by 10(-4) M verapamil, whereas aldosterone response to angiotensin was totally abolished, indicating that verapamil may act intracellularly to block the conversion of corticosterone to aldosterone. Taken together, these results indicate that, in amphibians extracellular calcium is essential for the action of ACTH, either for the binding of the hormone to its receptor and/or for the transduction of the information from hormone-receptor complex to the adenylate cyclase moiety and that the mechanism of action of angiotensin does not involve calcium uptake by adrenocortical cells.  相似文献   

15.
The review presents our results on the regulatory role of prostaglandins (PG) and nitric oxide (NO) in the activation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic, adrenergic and histaminergic systems and by neurohormones: corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) under basal conditions. The synthesis of endogenous PG or NO was inhibited by non-selective and selective cyclooxygenase (COX) antagonists and nitric oxide synthase (NOS) blockers given 15 min before the respective receptor agonist and HPA axis activity was assessed 1 h later by measuring plasma ACTH and serum corticosterone levels. The muscarinic agent - carbachol-induced HPA response was considerably supressed by piroxicam, a predominantly constitutive cyclooxygenase (COX-1) inhibitor and significantly diminished by indomethacin, a non-selective COX blocker, but was unaffected by compound NS-398, an inducible cyclooxygenase (COX-2) antagonist. A non-selective NOS antagonist L-NAME and neuronal NOS blocker L-NNA significantly intensified the carbachol-induced corticosterone secretion. The nicotine-induced increase in ACTH and corticosterone response was significantly supressed by piroxicam, and diminished by indomethacin, but was significantly augmented by L-NAME and L-NNA. The inhibition of PG synthesis by indomethacin totally abolished or reversed the increase of nicotine-induced hormone responses to both NOS blockers. The i.c.v. phenylephrine, an alpha(1)-adrenergic receptor agonist - evoked HPA response was significantly impaired by piroxicam and compound NS-398 and more potently reduced by L-NAME. The i.c.v. clonidine, an alpha(2)-adrenergic agonist - elicited HPA response was also considerably decreased by piroxicam, compound NS-398 and L-NAME. By contrast, the stimulatory effect of i.c.v. isoprenaline, a non-selective beta-adrenergic agonist, was not altered by either COX or NOS inhibitors. The i.c.v. histamine- and HTMT, a histamine H(1)-agonist-induced ACTH and corticosterone response were significantly diminished by piroxicam and indomethacin, respectively. Compound NS-398, did not markedly alter the HPA response to HTMT or amthamine, a histamine H(2) receptor agonist. Inhibition of endogenous NO synthesis by a neuronal NOS inhibitor 7-nitroindazole markedly enhanced the histamine-induced hormone secretion, abolished the HTMT-induced response and did not substantially alter the amthamine-evoked ACTH and corticosterone secretion. COX blockers did not significantly affect the CRH-induced HPA response and the inhibition of NO synthesis by L-NNA markedly intensified ACTH response. The vasopressin-stimulated increase in HPA response, was considerably reduced by the inhibition of PG synthesis by both COX antagonists while inhibition of NO synthesis by NOS blockers greatly enhanced this response. The involvement of PG and NO in the neurohormonal regulation of HPA activity depends mainly on greatly complex and tightly regulated mechanisms at the level of second messengers IP(3) and adenylyl cyclase systems.  相似文献   

16.
The sites of action of beta-melanocyte stimulating hormone (beta-MSH) on aldosterone biosynthesis were studied using collagenase-dispersed adrenal glomerulosa cells from rats maintained on either normal or sodium-deficient diets for 2 weeks. Isolated cells were treated with a cyanoketone derivative (WIN 19,578) to isolate the early and late steps in aldosterone biosynthesis. WIN 19,578 (1 microM) completely blocked aldosterone production stimulated by sodium depletion, AII, ACTH, and beta-MSH. beta-MSH (1 microM) significantly stimulated pregnenolone production (early step) and the conversion of corticosterone to aldosterone (late step) in aldosterone biosynthesis. The effect of beta-MSH was similar to AII and ACTH. Sodium depletion enhanced the effect of beta-MSH only on the late step in aldosterone biosynthesis. In conclusion, beta-MSH stimulates both the early and late steps of aldosterone biosynthesis. These results suggest that beta-MSH or peptides containing beta-MSH may play a role in the regulation of aldosterone production.  相似文献   

17.
Human adrenocortical tissue obtained, on eight occasions, at the time of nephrectomy for renal carcinoma (outside the adrenal pole) was treated by collagenase to dissociate the cells. These were hen submitted to a short, 2-h, incubation with the N-terminal fragment (16 K) of POMC, its derivative, gamma 3-MSH, beta-lipotropin and beta-endorphin, in parallel with ACTH 1-24 (Synacthen Ciba) and angiotensin II (AII, Hypertensin Ciba). Under the influence of ACTH (10(-10) M), and AII (10(-10) M), basal glucocorticoid output, including more than 80% cortisol, was increased by factors of 3 +/- 0.51 (SEM) and 1.35 +/- 0.12 (SEM), respectively. The corresponding aldosterone responses were 1.60 +/- 0.13 for ACTH and 1.38 +/- 0.09 for AII. With the exception of gamma 3-MSH, the POMC peptides under study had no steroidogenic effect. gamma 3-MSH (10(-9) M) and AII (10(-10) M) stimulated aldosterone production to approximately similar levels of, respectively, 1.23 +/- 0.05 and 1.38 +/- 0.09 times the basal production. In contrast to AII however, gamma 3-MSH showed no apparent effect on glucocorticoid output. Steroidogenic response to ACTH was potentiated by gamma 3-MSH at a concentration of 10(-10) M which, when used alone, proved ineffective. This potentiating effect was pronounced for the aldosterone response, whereas the glucocorticoid production was hardly affected. This action ceased to be visible when the cells reached maximal stimulation by ACTH. These findings suggest that gamma 3-MSH--a portion of the 16 K fragment--may have a possible role in aldosterone secretion.  相似文献   

18.
The effects of naloxone on basal and ACTH, Angiotensin II (AII) and [K+] o stimulated aldosterone secretion from superfused rat adrenocortical tissue were investigated. A high dose (10(-6) M) of naloxone inhibited while a smaller dose (10(-10) M) potentiated and doses of 10(-8) or 10(-12) M naloxone were without an effect on ACTH stimulated aldosterone secretion. A potentiation of AII stimulated aldosterone secretion was observed beginning 2 hrs after 10(-6) or 10(-10) M naloxone was administered while no effect was observed with 10(-4) M naloxone. No effects of 10(-6), 10(-8), 10(-12) M naloxone were detected on aldosterone secretion stimulated by transiently elevating extracellular potassium. Naloxone from 10(-4) to 10(-12) M did not appear to significantly influence basal steroidogenic activity under these conditions. These findings demonstrate that the "opioid antagonist" naloxone has prominent actions on adrenocortical tissue. Both the specificity and lack of specificity of the action of this agent to influence the activity of the 3 secretagogues suggest that naloxone and possibly a naturally occurring endogenous ligand interacts with one or more membrane receptor distinct from the ACTH receptor. A naturally occurring ligand for this receptor could play a prominent role in the physiological regulation of adrenal steroid secretion.  相似文献   

19.
20.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号