首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction  

CD25+ FOXP3+ CD4+ regulatory T cells (Tregs) are induced by transforming growth factor β (TGFβ) and further expanded by retinoic acid (RA). We have previously shown that this process was defective in T cells from lupus-prone mice expressing the novel isoform of the Pbx1 gene, Pbx1-d. This study tested the hypothesis that CD4+ T cells from systemic lupus erythematosus (SLE) patients exhibited similar defects in Treg induction in response to TGFβ and RA, and that PBX1-d expression is associated with this defect.  相似文献   

2.

Background  

Bone morphogenetic proteins (BMPs) are members of the conserved transforming growth factor β (TGFβ superfamily, and play many developmental and homeostatic roles. In C. elegans, a BMP-like pathway, the DBL-1 pathway, controls body size and is involved in innate immunity. How these functions are carried out, though, and what most of the downstream targets of this pathway are, remain unknown.  相似文献   

3.
Streptococcus pneumoniae is one of the most common causes of bacterial pneumonias in humans. Neutrophil migration into lungs infected with S. pneumoniae is central to the host defense but the mechanisms of neutrophil recruitment, as mediated by S. pneumoniae, into lungs are incompletely understood. Therefore, we have assessed the role of integrin αvβ3 by evaluating its subunit β3 in a mouse model of lung inflammation induced by S. pneumonia. Integrin subunit β3 knockout (β3-/-) and wild-type (WT) mice were intratracheally instilled with either S. pneumoniae or saline. Other groups of WT mice were treated intraperitoneally with 25 μg or 50 μg of antibody against integrin β3 or with isotype-matched antibody at 1 h before instillation of S. pneumoniae. Mice were killed 24 h after infection. Flow cytometry confirmed the absence or presence of integrin subunit β3 on peripheral blood neutrophils in β3-/- or WT mice, respectively. Neutrophil numbers in bronchoalveolar lavage (BAL) from infected β3-/- and WT mice showed no differences. Neutrophil numbers in BAL of infected WT mice treated with β3 antibody were lower compared with those without antibody but similar to those of mice administered isotype-matched antibody. Many neutrophils were present in the perivascular spaces of the lungs in β3-/- mice. Lungs from infected β3-/- mice had negligible mitogen-activated protein kinase expression compared with those of infected WT mice. Thus, integrin β3 or its heterodimer αvβ3 is not critical for neutrophil migration into lungs infected with S. pneumoniae.  相似文献   

4.

Background  

Transforming growth factor β proteins (Tgfβs) are secreted cytokines with well-defined functions in the differentiation of the musculoskeletal system of the developing limb. Here we have studied in chicken embryos, whether these cytokines are implicated in the development of the embryonic limb bud at stages preceding tissue differentiation.  相似文献   

5.

Background  

β-catenin and transforming growth factor β signaling are activated in fibroblasts during wound healing. Both signaling pathways positively regulate fibroblast proliferation during this reparative process, and the effect of transforming growth factor β is partially mediated by β-catenin. Other cellular processes, such as cell motility and the induction of extracellular matrix contraction, also play important roles during wound repair. We examined the function of β-catenin and its interaction with transforming growth factor β in cell motility and the induction of collagen lattice contraction.  相似文献   

6.
Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior–posterior (A–P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A–P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11−/− mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning.  相似文献   

7.

Introduction  

The objective of this study was to model the effects of transforming growth factor beta (TGF-β) and platelet-derived growth factor (PDGF), both present in rheumatoid arthritis (RA) synovia, on the behavior of fibroblast-like synoviocytes (FLS) in response to pro-inflammatory cytokine (interleukin (IL)1β, tumor necrosis factor-alpha (TNFα)) challenge.  相似文献   

8.
9.

Background  

The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor- β (TGF- β) pathway – one of the fundamental and versatile metazoan signal transduction engines.  相似文献   

10.
11.
12.

Background  

HC11 mouse mammary epithelial cells differentiate in response to lactogenic hormone resulting in expression of milk proteins including β-casein. Previous studies have shown that epidermal growth factor (EGF) blocks differentiation not only through activation of the Ras/Mek/Erk pathway but also implicated phosphatidylinositol-3-kinase (PI-3-kinase) signaling. The current study analyzes the mechanism of the PI-3-kinase pathway in an EGF-induced block of HC11 lactogenic differentiation.  相似文献   

13.

Introduction  

Vasculopathy, including altered vasoreactivity and abnormal large vessel biomechanics, is a hallmark of systemic sclerosis (SSc). However, the pathogenic link with other aspects of the disease is less clear. To assess the potential role of transforming growth factor beta (TGF-β) overactivity in driving these cardiovascular abnormalities, we studied a novel transgenic mouse model characterized by ligand-dependent activation of TGF-β signaling in fibroblasts.  相似文献   

14.

Background  

Functional antagonism between transforming growth factor beta (TGF-β) and hyaluronidase has been demonstrated. For example, testicular hyaluronidase PH-20 counteracts TGF-β1-mediated growth inhibition of epithelial cells. PH-20 sensitizes various cancer cells to tumor necrosis factor (TNF) cytotoxicity by upregulating proapoptotic p53 and WW domain-containing oxidoreductase (WOX1). TGF-β1 blocks PH-20-increased TNF cytotoxicity. In the present study, the functional antagonism between TGF-β1 and lysosomal hyaluronidases Hyal-1 and Hyal-2 was examined.  相似文献   

15.
The sodium/iodide symporter (SLC5A5, also known as NIS) is a transmembrane glycoprotein. Physiologically, iodide transportation in the mammary gland occurs during late pregnancy and lactation. To identify factors that may regulate this process at different iodine levels, we have studied the expression of NIS gene and protein in cultured mammary gland explants from lactating mice by real-time quantitative PCR and In-Cell Western methods. Mammary gland cells were grown in media with different levels of iodine for 24 h. The iodine treatment groups consist of low iodine group I (LI-I, 0 μg/l), low iodine group II (LI-II, 5 μg/l), control group (C, 50 μg/l), high iodine group I (HI-I, 3,000 μg/l), and high iodine group II (HI-II, 10,000 μg/l). The cells were then incubated with or without insulin-like growth factor I (IGF-I) or transforming growth factor β1 (TGF-β1) for another 24 h. We found that iodine inhibited NIS mRNA and protein expression in a dose-dependent manner. IGF-I and TGF-β1 further decreased NIS mRNA and protein expression that iodine inhibited at different iodine levels. In summary, we have shown that iodine downregulated NIS expression in cultured mammary gland explants from the lactating mouse. IGF-I and TGF-β1 inhibited NIS mRNA and protein expression in the mammary gland under different iodine levels.  相似文献   

16.
17.

Background  

Clinically effective T-cell responses can be elicited by single peptide vaccination with Wilms' tumor 1 (WT1) epitope 126–134 in patients with acute myeloid leukemia (AML). We recently showed that a predominant T-cell receptor (TCR) β chain was associated with vaccine-induced complete remission in an AML patient (patient 1). In this study, we address the question of whether this predominant clone or the accompanying Vβ11 restriction could be found in other AML patients vaccinated with the same WT1 peptide.  相似文献   

18.

Introduction  

Transforming growth factor beta (TGFβ) plays a central role in morphogenesis, growth, and cell differentiation. This cytokine is particularly important in cartilage where it regulates cell proliferation and extracellular matrix synthesis. While the action of TGFβ on chondrocyte metabolism has been extensively catalogued, the modulation of specific genes that function as mediators of TGFβ signalling is poorly defined. In the current study, elements of the Smad component of the TGFβ intracellular signalling system and TGFβ receptors were characterised in human chondrocytes upon TGFβ1 treatment.  相似文献   

19.

Background  

The transforming growth factor-β (TGF-β) family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-βs in fish muscle growth is not known.  相似文献   

20.

Background  

Connective tissue growth factor (CTGF) is a potent profibrotic factor, which is implicated in fibroblast proliferation, angiogenesis and extracellular matrix (ECM) synthesis. It is a downstream mediator of some of the effects of transforming growth factor β (TGFβ) and is potentially induced by hyperglycemia in human renal mesangial cells. However, whether high glucose could induce the CTGF expression in vascular smooth muscle cells (VSMCs) remains unknown. Therefore, this study was designed to test whether high glucose could regulate CTGF expression in human VSMC. The effect of modulating CTGF expression on VSMC proliferation and migration was further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号