首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollution from concentrated animal feeding operations (CAFOs) are the most serious pollution source in China now, and swine wastewater contains high concentrations of nutrients such as chemical oxygen demand (COD), biochemical oxygen demand 5 (BOD5), ammonium, and emergent contaminants related to public health. Biological processes are the most popular treatment methods for COD and ammonium removal. Considering the low operation cost, easy maintenance and high removal rate of contaminants in recent years, nitrogen removal via nitrite and real-time control processes using oxidation-reduction potential (ORP) and/or pH as parameters to control the aerobic and anaerobic cycles of a system has received much attention for animal wastewater treatment. During the biological treatment process, the emergent contaminants such as estrogen, antibiotics, and disinfec-tion reagents have been the focus of research recently, and degradation bacteria and resistance bacteria have also been extracted from activated sludge. The microbial analysis technique is also advancement in the field of biodegrada-tion bacteria and resistance bacteria. All of these advance-ments in research serve to improve wastewater treatment and decrease environmental hazards, especially for using manure as a fertilizer source for crop production.  相似文献   

2.
Summary Biosorption of zinc by sludge micro-organisms obtained from different steps of a conventional SWT plant has been studied. The best types of activated sludge for the process were found to be thickened, anaerobic and dewatered sludge giving up to 90–98% of metal elimination when working at initial zinc concentration lower than 50 mg/l. A relationship between pH and conditional stability constant has been found.  相似文献   

3.
  1. Download : Download high-res image (103KB)
  2. Download : Download full-size image
  相似文献   

4.
An entrapped mixed microbial cells (EMMC) process was used to investigate the simultaneous removal of carbon and nitrogen from dilute swine wastewater. Cellulose triacetate was used as the matrix for entrapping the mixed microbial cells. The EMMC process was tested with various oxygen supply conditions (ratios of aeration to non-aeration times) and two types of carrier sizes (large and medium). Also, various pre-treatments with chemical coagulation, screen separation and ammonium crystallization prior to the EMMC process, and post-treatment after the EMMC process were investigated. It was found that at a hydraulic retention time of 30 h and one hour of aeration and one hour of non-aeration, the EMMC process packed with medium carriers after the pretreatment of ammonium crystallization, exhibited the best total nitrogen removal efficiency of 95.1 +/- 1.0% when compared to the other two pre-treatment methods. The total chemical oxygen demand (TCOD) and soluble chemical oxygen demand removal efficiencies were 83.5 +/- 2.2% and 84.1 +/- 1.1%, respectively. Lime post-treatment provided TCOD and total phosphorus removal efficiencies of 59.6 +/- 2.7% and 98.0 +/- 0.5%, respectively. Thus, a cost analysis for ammonium crystallization pre-treatment, EMMC process, and post-treatment with lime was conducted. The unit cost for a 2000 pig operation is approximately dollars 4.91/pig/year. For the application of the EMMC process with the proposed pre- and post-treatments, a suitable farm size needs to be greater than a 2000 pig operation. Because of the high efficiency and the simple operation of simultaneous carbon and nitrogen removal, the EMMC process has the potential for treatment of dilute swine wastewater in a land-limited area and can be manufactured as pre-fabricated wastewater treatment units.  相似文献   

5.
Nitrate and ammonium removal from purified swine wastewater using biogas and air was investigated in continuous reactor operation. A novel type of reactor, a semi-partitioned reactor (SPR), which enables a biological reaction using methane and oxygen in the water phase and discharges these unused gases separately, was operated with a varying gas supply rate. Successful removal of NO(3)(-) and NH(4)(+) was observed when biogas and air of 1L/min was supplied to an SPR of 9L water phase with a NO(2,3)(-)-N and NH(4)(+)-N removal rate of 0.10 g/L/day and 0.060 g/L/day, respectively. The original biogas contained an average of 77.2% methane, and the discharged biogas from the SPR contained an average of 76.9% of unused methane that was useable for energy like heat or electricity production. Methane was contained in the discharged air from the SPR at an average of 2.1%. When gas supply rates were raised to 2L/min and the nitrogen load was increased, NO(3)(-) concentration was decreased, but NO(2)(-) accumulated in the reactor and the NO(2,3)(-)-N and NH(4)(+)-N removal activity declined. To recover the activity, lowering of the nitrogen load and the gas supply rate was needed. This study shows that the SPR enables nitrogen removal from purified swine wastewater using biogas under limited gas supply condition.  相似文献   

6.
In intensive farming areas, the design of biological nitrogen removal plants for piggery wastewater requires the determination of the chemical oxygen demand (COD) fractions of the effluent. For this purpose, an experimental procedure was developed to quantify the inert soluble (SI) and particulate (XI) COD fractions, as well as the readily (SS) and the slowly (XS) biodegradable COD fractions. For the four wastewaters tested, the SI and the XI fractions were equal to 3-4 g O(2)l(-1) and 17-28 g O(2)l(-1), respectively, which resulted in a total inert fraction of 42-84% of total COD. The SS and the XS fractions were very variable, ranging 0-5 g O(2)l(-1) and 4-25 g O(2)l(-1) respectively, depending on the farm management practices and the storage conditions prior to biological treatment. From these results, the denitrification potential of the piggery wastewaters for biological nitrogen removal treatment could be assessed.  相似文献   

7.
Thermophilic biological nitrogen removal in industrial wastewater treatment   总被引:1,自引:0,他引:1  
Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification–two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.  相似文献   

8.
The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H2S and NOx–N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NOx–N and H2S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.  相似文献   

9.
Biological removal of nitrogen is a two-step process: aerobic autotrophic microorganisms oxidize ammoniacal nitrogen to nitrate, and the nitrate is further reduced to elementary nitrogen by heterotrophic microorganisms under anoxic condition with concomitant organic carbon removal. Several state variables are involved which render process monitoring a demanding task, as in most biotechnological processes, measurement of primary variables such as microorganism, carbon and nitrogen concentrations is either difficult or expensive. An alternative is to use a process model of reduced order for on-line inference of state variables based on secondary process measurements, e.g. pH and redox potential. In this work, two modeling approaches were investigated: a generic reduced order model based on the generally accepted IAWQ No. 1 Model [M. Henze, C.P.L., Grady, W., Gujer, G.V.R., Marais, T., Matsuo, Water Res. 21 (5) (1987) 505-515]-generic model (GM), and a reduced order model specially validated with the data acquired from a benchscale sequential batch reactor (SBR) specific model (SM). Model inaccuracies and measurement errors were compensated for with a Kalman filter structure to develop two state observers: one built with GM, the generic observer (GO), and another based on SM, the specific observer (SO). State variables estimated by GM, SM, GO and SO were compared to experimental data from the SBR unit. GM gave the worst performance while SM predictions presented some model to data mismatch. GO and SO, on the other hand, were both in very good agreement with experimental data showing that filters add robustness against model errors, which reduces the modeling effort while assuring adequate inference of process variables.  相似文献   

10.
Chen Y  Gu G 《Bioresource technology》2005,96(15):1713-1721
The long-term continuous chromium(VI) removal from synthetic wastewater affected by influent hexavalent chromium (Cr(VI)) and glucose concentrations were studied with an anaerobic-aerobic activated sludge process. It was observed that before activated sludge was acclimated, the chromium in the effluent increased immediately as the influent chromium increased. However, both Cr(VI) and total chromium (TCr) in the effluent significantly decreased after acclimation. In the acclimated activated sludge, the chromium removal efficiency was 100% Cr(VI) and 98.56% TCr at influent Cr(VI) levels of 20 mg/day, 100% Cr(VI) and 98.92% TCr at influent Cr(VI) levels of 40 mg/day, and 98.64% Cr(VI) and 97.16% TCr at influent Cr(VI) levels of 60 mg/day. The corresponding effluent Cr(VI) and TCr concentrations were 0 and 0.012 mg/l, 0 and 0.018 mg/l, and 0.034 mg/l and 0.071 mg/l, respectively. When the influent glucose increased from 1125 to 1500 mg/l at influent Cr(VI) dosage of 60 mg/day, the Cr(VI) and TCr removal efficiency with the acclimated activated sludge improved from 98.64% and 97.16% to 100% and 98.48%, respectively, and the chromium concentration in the effluent decreased from 0.034 mg/l of Cr(VI) and 0.071 mg/l of TCr to 0 (Cr(VI)) and 0.038 mg/l (TCr). The effluent COD and turbidity was around 40 mg/l and 0, respectively, after the activated sludge was acclimated. Further studies showed that after the activated sludge was acclimated, its specific dehydrogenases activity (SDA) and protein contents increased. The SDA and protein increased respectively 15% and 10% when influent Cr(VI) increased from 20 to 60 mg/day.  相似文献   

11.
Online estimation of unknown state variables is a key component in the accurate modelling of biological wastewater treatment processes due to a lack of reliable online measurement systems. The extended Kalman filter (EKF) algorithm has been widely applied for wastewater treatment processes. However, the series approximations in the EKF algorithm are not valid, because biological wastewater treatment processes are highly nonlinear with a time-varying characteristic. This work proposes an alternative online estimation approach using the sequential Monte Carlo (SMC) methods for recursive online state estimation of a biological sequencing batch reactor for wastewater treatment. SMC is an algorithm that makes it possible to recursively construct the posterior probability density of the state variables, with respect to all available measurements, through a random exploration of the states by entities called ‘particle’. In this work, the simplified and modified Activated Sludge Model No. 3 with nonlinear biological kinetic models is used as a process model and formulated in a dynamic state-space model applied to the SMC method. The performance of the SMC method for online state estimation applied to a biological sequencing batch reactor with online and offline measured data is encouraging. The results indicate that the SMC method could emerge as a powerful tool for solving online state and parameter estimation problems without any model linearization or restrictive assumptions pertaining to the type of nonlinear models for biological wastewater treatment processes.  相似文献   

12.
Integrated biological process for olive mill wastewater treatment   总被引:1,自引:0,他引:1  
The biological process for OMW treatment is based on an aerobic detoxification step followed by methanization step and aerobic post-treatment.The first aerobic detoxification step of OMW supplemented with sulfate and ammonium was carried out by the growth of Aspergillus niger in a bubble column. This step decreased OMW toxicity and increased its biodegradability because of phenolic compounds degradation. Growth of A. niger resulted in 58% COD removal, with production of biomass containing 30% proteins (w/w). Filtration of OMW was enhanced by this fermentation because the suspended solids were trapped in the mycelium. The filtrate liquid was then methanized using an anaerobic filter packed with flocoor. This reactor showed a short start up and a good stability. COD removal was around 60% and the methane yield (1 CH4/g COD removed) was close to the theoretical yield.The anaerobic filter effluent was treated in an activated sludge fluidized reactor containing olive husk as a packing material. Husks were maintained in fluidization state by the aeration. This step induces COD removal at 45% and sludge (up to 2 g/dm3).The entire process allowed a global COD reduction up to 90%; however, the black colour due to polyphenolic compounds with high molecular weight persisted.  相似文献   

13.
14.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

15.
Virus and bacteria removal from wastewater by land treatment.   总被引:12,自引:12,他引:0       下载免费PDF全文
Secondary sewage effluent and renovated water from four wells at the Flushing Meadows Wastewater Renovation Project near Phoenix, Arizona, in operation since 1967, were assayed approximately every 2 months in 1974 for viruses and enteric bacteria during flooding periods. No viruses of Salmonella sp. were detected in any renovated well water samples, and the numbers of fecal coliforms, fecal streptococci, and total bacteria were decreased by about 99.9% in the renovated well waters after the wastewater was filtered through about 9 m of soil.  相似文献   

16.
Kinetics of biological removal of COD from a synthetic wastewater in a continuous fluidized bed containing sponge particles with wire mesh was investigated. Synthetic wastewater consisted of diluted molasses, urea, KH2PO4 and MgSO4 resulting in COD/N/P = 100/8/1. Fluidized bed contained sponge particles surrounded by stainless steel wires as support particles for organisms. A culture of Zooglea ramigera was used as the dominant organisms in mixed culture media throughout the experiments.The system was operated continuously with different hydraulic residence times, and COD loading rates and the variation of effluent COD concentration with those parameters was investigated. Kinetic constants of the system were determined by using the continuous experimental data. System has been operated under COD limitation and DO limitations were overcome by vigirous aeration. Kinetic constants determined in this system were in good agreement with literature values with a possible inhibition effect on Ks term.This study was supported by the Technical and Scientific Research Council of Turkiye.  相似文献   

17.
The performance of a pilot-scale biological nutrient removal process has been evaluated for 336 days, receiving the real municipal wastewater with a flowrate of 6.8 m3/d. The process incorporated an intermittent aeration reactor for enhancing the effluent quality, and a nitrification reactor packed with the porous polyurethane foam media for supporting the attached-growth of microorganism responsible for nitrification. The observation shows that the process enabled a relatively stable and high performance in both organics and nutrient removals. When the SRT was maintained at 12 days, COD, nitrogen, and phosphorus removals averaged as high as 89% at a loading rate of 0.42–3.95 kg COD/m3 d (corresponding to average influent concentration of 304 mg COD/L), 76% at the loading rate of 0.03–0.27 kg N/m3 d (with 37.1 mg TN/L on average), and 95% at the loading rate of 0.01–0.07 kg TP/m3 d (with 5.4 mg TP/L on average), respectively.  相似文献   

18.
19.
The aim of this work was to assess the efficacy for simultaneous enhanced removal of nitrogen and phosphorus including organics treating combined wastewater generated from a chemical laboratory using a bench-scale Intermittent Cyclic Process Bio-reactor (ICPBR). The performance efficacy indicated that the ICPBR system with solid retention time of 15 days achieved optimum efficiency with an overall removal of ammonia nitrogen (NH4-N), phosphorus (PO4-P), and chemical oxygen demand (COD) in the range, 83-92%, 74-93%, and 90-96%, respectively.  相似文献   

20.
Kim YM  Park D  Jeon CO  Lee DS  Park JM 《Bioresource technology》2008,99(18):8824-8832
A lab-scale serial anoxic-aerobic reactor for the pre-denitrification process was continuously operated to efficiently and economically treat actual cokes wastewater containing various pollutants, such as phenol, ammonia, thiocyanate and cyanide compounds. The biodegradation efficiencies of the pollutants were examined by changing hydraulic retention time (HRT) as a main operating variable. The long-term operation of the pre-denitrification process reactor showed that approximately 100% phenol, approximately 100% free cyanide, approximately 100% SCN(-), 97% ammonia, 85% COD, 84% TOC (total organic carbon) and 83% TN (total nitrogen) were removed at HRT above 11.9h. Removal efficiency of total cyanides significantly decreased with a decrease in the HRT. Free cyanide and some of total cyanides were removed in anoxic reactor, whereas thiocyanate was removed in aerobic reactor. Phenol was completely removed under successive anoxic and aerobic conditions. Although actual cokes wastewater contained high concentrations of various toxic pollutants, the pre-denitrification process showed stable and successful performances in both nitrification and denitrification reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号