首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbits were immunized by the water soluble cow cornea antigens. The particle immunochemical identity between cow cornea antigens and cow lens, vitreous humor, aqueous humor, iris, choroid and retina was found in reaction of immunodiffusion in gel. Immune cross reactions between cow cornea antigens and human antigens of different tissue were absent. 9 antigens were indicated by immunoelectrophoresis in cow cornea. Three of them with gamma-mobility locate in epithelium, 2-with gamma-mobility--in endothelium and 4 (two with beta-mobility, and one of alpha 1-mobility and another alpha 2-mobility) in stroma. The possible role of different antigenic composition of cornea is discussed.  相似文献   

2.
3.
The development of the cornea as a tissue initiates as early as five weeks in the human embryo. This development continues gradually until the time of eyelid opening, which is associated with major developmental changes. These events, most easily observed in rodents, which are born with closed eyelids, include alterations in the rate of cell proliferation in the epithelium, stroma and endothelium; differentiation of the epithelium; appearance of a tear film and tear-film-associated proteins; and swelling and thinning of the stroma. Eyelid opening is also associated with numerous alterations in gene expression. These events are the subject of this review. Readers are directed to the article by Wolosin et al., also in this volume, for an in-depth discussion of early corneal development.  相似文献   

4.
The HMGN proteins are a group of non-histone nuclear proteins that associate with the core nucleosome and alter the structure of the chromatin fiber. We investigated the distribution of the three best characterized HMGN family members, HMGN1, HMGN2 and HMGN3 during mouse eye development. HMGN1 protein is evenly distributed in all ocular structures of 10.5 days post-coitum (dpc) mouse embryos however, by 13.5dpc, relatively less HMGN1 is detected in the newly formed lens fiber cells compared to other cell types. In the adult, HMGN1 is detected throughout the retina and lens, although in the cornea, HMGN1 protein is predominately located in the epithelium. HMGN2 is also abundant in all ocular structures of mouse embryos, however, unlike HMGN1, intense immunolabeling is maintained in the lens fiber cells at 13.5dpc. In the adult eye, HMGN2 protein is still found in all lens nuclei while in the cornea, HMGN2 protein is mostly restricted to the epithelium. In contrast, the first detection of HMGN3 in the eye is in the presumptive corneal epithelium and lens fiber cells at 13.5dpc. In the lens, HMGN3 remained lens fiber cell preferred into adulthood. In the cornea, HMGN3 is transiently upregulated in the stroma and endothelium at birth while its expression is restricted to the corneal epithelium in adulthood. In the retina, HMGN3 upregulates around 2 weeks of age and is found at relatively high levels in the inner nuclear and ganglion cell layers of the adult retina. RT-PCR analysis determined that the predominant HMGN3 splice form found in ocular tissues is HMGN3b which lacks the chromatin unfolding domain although HMGN3a mRNA is also detected. These results demonstrate that the HMGN class of chromatin proteins has a dynamic expression pattern in the developing eye.  相似文献   

5.
An intact globe method was developed to determine the characteristics of the cornea of the bullfrog, Rana catesbeiana. With this method the anterior chamber could be perfused and the transcorneal potential difference (PD) and electrical resistance determined. It was found for the endothelium plus stroma (epithelium scraped) that the PD was essentially zero and the electrical resistance was only a small fraction of that of the intact cornea. Elevation of K+ or decrease in Cl- concentration in the anterior chamber produced in intact corneas a large and rapid change in PD while with the epithelium scraped (stroma and endothelium intact) these elevations produced a negligible change in PD. It is concluded that ions can rapidly move across the endothelium and stroma of the cornea.  相似文献   

6.
Corneal tissues (epithelium, endothelium, and stroma) were isolated from chick embryos at 14, 17, and 20 days of incubation and immediately labeled in vitro with d-[6-3H]glucosamine and H235SO4. Amount of label incorporated into each type of glycosaminoglycan or into glycopeptides was determined by specific degradative techniques, in conjunction with gel filtration chromatography. Results suggested that corneal epithelium synthesized little, if any, corneal keratan sulfates, but that corneal endothelium may have synthesized small amounts of corneal keratan sulfates. Nearly all corneal keratan sulfates were derived from the stroma. Corneal heparan sulfates appeared to be derived predominantly from corneal epithelium at later stages of development. Corneal endothelium contributed large proportions of the hyaluronic acids of the cornea. Only epithelium produced a large proportion of sulfated glycoproteins. In addition, epithelium synthesized a large proportion of a sulfated, high molecular weight polysaccharide which was resistant to treatments degrading known types of glycosaminoglycans. Each corneal tissue may not only affect corneal morphogenesis directly by contributing a unique spectrum of glycosylated proteins to the extracellular matrix, but also may regulate the extracellular matrix composition indirectly by modulating the biosynthetic activities of the other corneal tissues.  相似文献   

7.
小鼠角膜发育期间凝集素受体的分布及变化   总被引:1,自引:0,他引:1  
Using ConA-HRP and RCAI-HRP as probes, the distribution and changes of glycosides in mouse cornea were studied during pre- and postnatal development. Mannose residues were distributed mainly in stroma and endothelium, sialic acid residues in epithelium and galactose residues in both epithelium and stroma. Mannose residues in stroma showed an increased density toward endothelium before and after birth. Sialic acid and galactose residues were concentrated gradually at the corneal epithelial surface in accompanied with the development of cornea. The embryonic day 13 was the starting day to synthesize glycoconjugates from fibroblasts of mouse cornea.  相似文献   

8.
用辣根过氧化物酶标记的ConA、WGA和RCA Ⅰ为探针,研究了小鼠发育期间角膜内糖残基的分布和变化。Man残基主要分布在角膜基质和内皮;SA残基主要存在于角膜上皮;Gal残基在角膜上皮和基质中都有分布。Man残基在出生前后的小鼠角膜基质中朝内皮方向呈现递增的梯度。SA和Gal残基随角膜发育最后在成体角膜上皮的外表而密集。胎龄13天是小鼠角膜成纤维细胞合成复合糖的起始时间。  相似文献   

9.
10.
花背蟾蜍蝌蚪变态期角膜发育的研究   总被引:5,自引:0,他引:5  
王子仁  仝允栩 《动物学报》1989,35(4):370-375
作者用光镜和电镜研究了花背蟾蜍蝌蚪变态期角膜的发育。在后肢发育晚期,内、外角膜在中央部位首先愈台,在完全变态期角膜完全愈合,此时角膜上皮细胞增殖,上皮基质变为Bowman’s膜,内、外角膜之间的成纤维细胞和由它分泌的胶原纤维形成角膜基质,内角膜细胞形成单层的角膜内皮,它与角膜基质间的Descemet’s膜最晚形成。  相似文献   

11.
Studies on the intact avascular cornea reveal two types of lactate effluxes: exogenous glucose-elicited and spontaneous. The former type exhibits characteristics resembling the proton-lactate symport system previously found in tumor cells and erythrocytes, including an enhanced lactate efflux at a higher extracellular pH and in the presence of H+ and K+ ionophores, and an inhibition by mersalyl with subsequent lactate accumulation in the tissue and cessation of glycolytic activity. The latter type occurs immediately following the incubation of freshly isolated cornea in a medium containing no exogenous glucose, with a rate about 10 times that of exogenous glucose-elicited lactate efflux. It is insensitive to 10 mM iodoacetate and lacks the characteristics of the proton-lactate symport system. Findings reveal that about 50% of corneal glucose utilization occurs in the epithelium, with the stroma and endothelium sharing the other 50% approximately equally. Of the glucose utilized, the lactate formation to pyruvate oxidation rate ratios are approximately 1:1 in the epithelium, 2:1 in the stroma, and 1:2 in the endothelium. About 79% of total tissue lactate is formed in the epithelium and stroma, and in vivo, this is probably pumped into the stromal extracellular space (about 90% of total tissue volume) via the proton-lactate symport system, with spontaneous release into the aqueous humor via a simple diffusion process. The H+ and K+ ionophores facilitate lactate efflux at the expense of the cellular pyruvate pool, without significant effect on the glucose uptake and glycolytic activity. These findings suggest that the ionophore-mediated lactate efflux favors the reduction of low pyruvate concentration in the tissue, rather than parallel increases in glycolytic activity.  相似文献   

12.
The present study traces corneal morphogenesis in a reptile, the lizard Calotes versicolor, from the lens placode stage (stage 24) until hatching (stage 42), and in the adult. The corneal epithelium separates from the lens placode as a double layer of peridermal and basal cells and remains bilayered throughout development and in the adult. Between stages 32– and 33+, the corneal epithelium is apposed to the lens, and limbic mesodermal cells migrate between the basement membrane of the epithelium and the lens capsule to form a monolayered corneal endothelium. Soon thereafter a matrix of amorphous ground substance and fine collagen fibrils, the presumptive stroma, is seen between the epithelium and the endothelium. Just before stage 34 a new set of limbic mesodermal cells, the keratocytes, migrate into the presumptive stroma. Migrating limbic mesodermal cells, both endothelial cells and keratocytes, use the basement membrane of the epithelium as substratum. Keratocytes may form up to six cell layers at stage 37, but in the adult stroma they form only one or two cell layers. The keratocytes sysnthesize collagen, which aggregates as fibrils and fibers organized in lamellae. The lamellae become condensed as dense collagen layers subepithelially or become compactly organized into a feltwork structure in the rest of the stroma. The basement membrane of the endothelium is always thin. Thickness of the entire cornea increases up to stage 38 and decreases thereafter until stage 41. In the adult the cornea is again nearly as thick as at stage 38.  相似文献   

13.

Background  

The ocular anterior segment is critical for focusing incoming light onto the neural retina and for regulating intraocular pressure. It is comprised of the cornea, lens, iris, ciliary body, and highly specialized tissue at the iridocorneal angle. During development, cells from diverse embryonic lineages interact to form the anterior segment. Abnormal migration, proliferation, differentiation, or survival of these cells contribute to diseases of the anterior segment such as corneal dystrophy, lens cataract, and glaucoma. Zebrafish represent a powerful model organism for investigating the genetics and cell biology of development and disease. To lay the foundation for genetic studies of anterior segment development, we have described the morphogenesis of this structure in zebrafish.  相似文献   

14.
15.
Diseases of the cornea are extremely common and cause severe visual impairment worldwide. To explore the basic molecular mechanisms involved in corneal health and disease, the present study characterizes the proteome of the normal human cornea. All proteins were extracted from the central 7-mm region of 12 normal human donor corneas containing all layers: epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Proteins were fractionated and identified using two different procedures: (i) two-dimensional gel electrophoresis and protein identification by MALDI-MS and (ii) strong cation exchange or one-dimensional SDS gel electrophoresis followed by LC-MS/MS. All together, 141 distinct proteins were identified of which 99 had not previously been identified in any mammalian corneas by direct protein identification methods. The characterized proteins are involved in many processes including antiangiogenesis, antimicrobial defense, protection from and transport of heme and iron, tissue protection against UV radiation and oxidative stress, cell metabolism, and maintenance of intracellular and extracellular structures and stability. This proteome study of the healthy human cornea provides a basis for further analysis of corneal diseases and the design of bioengineered corneas.  相似文献   

16.
Diseases of the cornea are common and refer to conditions like infections, injuries and genetic defects. Morphologically, many corneal diseases affect only certain layers of the cornea and separate analysis of the individual layers is therefore of interest to explore the basic molecular mechanisms involved in corneal health and disease. In this study, the three main layers including, the epithelium, stroma and endothelium of healthy human corneas were isolated. Prior to analysis by LC-MS/MS the proteins from the different layers were either (i) separated by SDS-PAGE followed by in-gel trypsinization, (ii) in-solution digested without prior protein separation or, (iii) in-solution digested followed by cation exchange chromatography. A total of 3250 unique Swiss-Prot annotated proteins were identified in human corneas, 2737 in the epithelium, 1679 in the stroma, and 880 in the endothelial layer. Of these, 1787 proteins have not previously been identified in the human cornea by mass spectrometry. In total, 771 proteins were quantified, 157 based on in-solution digestion and 770 based on SDS-PAGE separation followed by in-gel digestion of excised gel pieces. Protein analysis showed that many of the identified proteins are plasma proteins involved in defense responses.  相似文献   

17.
During the development of the anterior segment of the eye, neural crest mesenchyme cells migrate between the lens and the corneal epithelium. These cells contribute to the structures lining the anterior chamber: the corneal endothelium and stroma, iris stroma, and trabecular meshwork. In the present study, removal of the lens or replacement of the lens with a cellulose bead led to the formation a disorganized aggregate of mesenchymal cells beneath the corneal epithelium. No recognizable corneal endothelium, corneal stroma, iris stroma, or anterior chamber was found in these eyes. When the lens was replaced immediately after removal, a disorganized mass of mesenchymal cells again formed beneath the corneal epithelium. However, 2 days after surgery, the corneal endothelium and the anterior chamber formed adjacent to the lens. When the lens was removed and replaced such that only a portion of its anterior epithelial cells faced the cornea, mesenchyme cells adjacent to the lens epithelium differentiated into corneal endothelium. Mesenchyme cells adjacent to lens fibers did not form an endothelial layer. The cell adhesion molecule, N-cadherin, is expressed by corneal endothelial cells. When the lens was removed the mesenchyme cells that accumulated beneath the corneal epithelium did not express N-cadherin. Replacement of the lens immediately after removal led to the formation of an endothelial layer that expressed N-cadherin. Implantation of lens epithelia from older embryos showed that the lens epithelium maintained the ability to support the expression of N-cadherin and the formation of the corneal endothelium until E15. This ability was lost by E18. These studies provide evidence that N-cadherin expression and the formation of the corneal endothelium are regulated by signals from the lens. N-cadherin may be important for the mesenchymal-to-epithelial transformation that accompanies the formation of the corneal endothelium.  相似文献   

18.

Purpose

We report our findings from a preclinical safety study designed to assess potential side effects of corneal ultraviolet femtosecond laser treatment on lens and retina.

Methods

Refractive lenticules (-5 dpt) with a diameter of 6 mm were created in the right cornea of eight Dutch Belted rabbits. Radiant exposure was 0.5 J/cm² in two animals and 18 J/cm² in six animals. The presence of lens opacities was assessed prior to and up to six months following laser application using Scheimpflug images (Pentacam, Oculus) and backscatter analysis (Opacity Lensmeter 702, Interzeag). Ganzfeld flash and flicker electroretinogram (ERG) recordings were obtained from both eyes prior to and up to six weeks following laser application. At the study endpoint, retinas were examined by light microscopy.

Results

Independent of energy dose applied, no cataract formation could be observed clinically or with either of the two objective methods used. No changes in ERG recordings over time and no difference between treated and untreated eye were detected. Histologically, retinal morphology was preserved and retinal pigment epithelium as well as photoreceptor inner and outer segments appeared undamaged. Quantitative digital image analysis did not reveal cell loss in inner or outer nuclear layers.

Conclusions

Our analysis confirms theoretical considerations suggesting that ultraviolet femtosecond laser treatment of the cornea is safe for intraocular tissues. Transmitted light including stray light induces no photochemical effects in lens or retina at energy levels much higher than required for the clinical purpose. These conclusions cannot be applied to eyes with pre-existing retinal damage, as these may be more vulnerable to light.  相似文献   

19.
The anterior segment of the vertebrate eye is constructed by proper spatial development of cells derived from the surface ectoderm, which become corneal epithelium and lens, neuroectoderm (posterior iris and ciliary body) and cranial neural crest (corneal stroma, corneal endothelium and anterior iris). Although coordinated interactions between these different cell types are presumed to be essential for proper spatial positioning and differentiation, the requisite intercellular signals remain undefined. We have generated transgenic mice that express either transforming growth factor (alpha) (TGF(alpha)) or epidermal growth factor (EGF) in the ocular lens using the mouse (alpha)A-crystallin promoter. Expression of either growth factor alters the normal developmental fate of the innermost corneal mesenchymal cells so that these cells often fail to differentiate into corneal endothelial cells. Both sets of transgenic mice subsequently manifest multiple anterior segment defects, including attachment of the iris and lens to the cornea, a reduction in the thickness of the corneal epithelium, corneal opacity, and modest disorganization in the corneal stroma. Our data suggest that formation of a corneal endothelium during early ocular morphogenesis is required to prevent attachment of the lens and iris to the corneal stroma, therefore permitting the normal formation of the anterior segment.  相似文献   

20.
Keratan sulfate (KS) proteoglycans are of importance for the maintenance of corneal transparency as evidenced in the condition macular corneal dystrophy type I (MCD I), a disorder involving the absence of KS sulfation, in which the cornea becomes opaque. In this transmission electron microscope study quantitative immuno- and histochemical methods have been used to examine a normal and MCD I cornea. The monoclonal antibody, 5-D-4, has been used to localize sulfated KS and the lectin Erythrina cristagalli agglutinin (ECA) to localize poly N -acetyllactosamine (unsulfated KS). In normal cornea high levels of sulfated KS were detected in the stroma, Bowman's layer, and Descemet's membrane and low levels in the keratocytes, epithelium and endothelium. Furthermore, in normal cornea, negligible levels of labeling were found for N -acetyllactosamine (unsulfated KS). In the MCD I cornea sulfated KS was not detected anywhere, but a specific distribution of N -acetyllactosamine (unsulfated KS) was evident: deposits found in the stroma, keratocytes, and endothelium labeled heavily as did the disrupted posterior region of Descemet's membrane. However, the actual cytoplasm of cells and the undisrupted regions of stroma revealed low levels of labeling. In conclusion, little or no unsulfated KS is present in normal cornea, but in MCD I cornea the abnormal unsulfated KS was localized in deposits and did not associate with the collagen fibrils of the corneal stroma. This study has also shown that ECA is an effective probe for unsulfated KS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号