首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Activity-dependent selective reduction of synaptic efficacy is expressed in an in vitro system involving mouse spinal cord and muscle cells. Thrombin or electrical stimulation of the innervating axons induces a decrease in neuromuscular synapse strength, and a specific thrombin inhibitor, hirudin, blocks the electrically evoked down-regulation of synapse effectiveness. We further demonstrate that a thrombin receptor-activating peptide (TRAP), SFLLRNPNDKYEPF, produces a decrement of synapse strength. Both TRAP and electrically evoked synapse decrement are prevented by the specific protein kinase C blocker calphostin C, and the TRAP-evoked synapse decrement is unaffected by a specific protein kinase A blocker, H-89. Thus, we propose that muscle activity, thrombin release, and thrombin receptor and PKC activation are initial steps in the process of the activity-dependent synapse reduction expressed in our system.  相似文献   

2.
We report the results of a genetic screen to identify molecules important for synapse formation and/or maintenance. siRNAs were used to decrease the expression of candidate genes in neurons, and synapse development was assessed. We surveyed 22 cadherin family members and demonstrated distinct roles for cadherin-11 and cadherin-13 in synapse development. Our screen also revealed roles for the class 4 Semaphorins Sema4B and Sema4D in the development of glutamatergic and/or GABAergic synapses. We found that Sema4D affects the formation of GABAergic, but not glutamatergic, synapses. Our screen also identified the activity-regulated small GTPase Rem2 as a regulator of synapse development. A known calcium channel modulator, Rem2 may function as part of a homeostatic mechanism that controls synapse number. These experiments establish the feasibility of RNAi screens to characterize the mechanisms that control mammalian neuronal development and to identify components of the genetic program that regulate synapse formation and/or maintenance.  相似文献   

3.
Activity‐dependent selective reduction of synaptic efficacy is expressed in an in vitro system involving mouse spinal cord and muscle cells. Thrombin or electrical stimulation of the innervating axons induces a decrease in neuromuscular synapse strength, and a specific thrombin inhibitor, hirudin, blocks the electrically evoked down‐regulation of synapse effectiveness. We further demonstrate that a thrombin receptor‐activating peptide (TRAP), SFLLRNPNDKYEPF, produces a decrement of synapse strength. Both TRAP and electrically evoked synapse decrement are prevented by the specific protein kinase C blocker calphostin C, and the TRAP‐evoked synapse decrement is unaffected by a specific protein kinase A blocker, H‐89. Thus, we propose that muscle activity, thrombin release, and thrombin receptor and PKC activation are initial steps in the process of the activity‐dependent synapse reduction expressed in our system. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 369–381, 1999  相似文献   

4.
During physiological T-cell stimulation by antigen presenting cells (APCs), a major T-cell membrane rearrangement is known to occur leading to the organization of 'supramolecular activation clusters' at the immunological synapse. A possible role for the synapse is the generation of membrane compartments where signalling may be organized and propagated. Thus, engagement of the costimulatory molecule CD28 at the immunological synapse promotes the organization of a signalling compartment by inducing cytoskeletal changes and lipid raft accumulation. We identified the actin-binding protein Filamin-A (FLNa) as a novel molecular partner of CD28. We found that, after physiological stimulation, CD28 associated with and recruited FLNa into the immunological synapse, where FLNa organized CD28 signalling. FLNa knockdown by short interfering RNA (siRNA) inhibited CD28-mediated raft accumulation at the immunological synapse and T-cell costimulation. Together, our data indicate that CD28 binding to FLNa is required to induce the T-cell cytoskeletal rearrangements leading to recruitment of lipid microdomains and signalling mediators into the immunological synapse.  相似文献   

5.
A tripartite synapse comprises a neuronal presynaptic axon and a postsynaptic dendrite, which are closely ensheathed by a perisynaptic astrocyte process. Through their structural and functional association with thousands of neuronal synapses, astrocytes regulate synapse formation and function. Recent work revealed a diverse range of cell adhesion–based mechanisms that mediate astrocyte–synapse interactions at tripartite synapses. Here, we will review some of these findings unveiling a highly dynamic bidirectional signaling between astrocytes and synapses, which orchestrates astrocyte morphological maturation and synapse development. Moreover, we will discuss the roles of these newly discovered molecular pathways in brain physiology and function both in health and disease.  相似文献   

6.
All T cell functions require establishing contacts with other cells. In the last ten years, the immunological synapse, the contact-site between T cells and their partners, has been the object of numerous investigations and recent advances in imaging technologies have provided significant insights into the mechanism of immunological synapse formation and its functional outcomes. Considering all the available data, the immunological synapse can be defined as a dynamic structure, formed between a T cell and one or more antigen-presenting cells, showing lipid and protein segregation, signaling compartmentalization, and bidirectional information exchange though soluble and membrane-bound transmitters. In this review, we present the current views on the immunological synapse and discuss about some interesting unresolved questions.Key words: T lymphocyte, immunological synapse, signaling, microcluster, TCR, lipid raft, costimulation  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4+ T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4+ T cells.  相似文献   

8.
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as “SynTAMs” for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.  相似文献   

9.
Pielage J  Bulat V  Zuchero JB  Fetter RD  Davis GW 《Neuron》2011,69(6):1114-1131
Neural development requires both synapse elaboration and elimination, yet relatively little is known about how these opposing activities are coordinated. Here, we provide evidence Hts/Adducin can serve this function. We show that Drosophila Hts/Adducin is enriched both pre- and postsynaptically at the NMJ. We then demonstrate that presynaptic Hts/Adducin is necessary and sufficient to control two opposing processes associated with synapse remodeling: (1) synapse stabilization as determined by light level and ultrastructural and electrophysiological assays and (2) the elaboration of actin-based, filopodia-like protrusions that drive synaptogenesis and growth. Synapse remodeling is sensitive to Hts/Adducin levels, and we provide evidence that the synaptic localization of Hts/Adducin is controlled via phosphorylation. Mechanistically, Drosophila Hts/Adducin protein has actin-capping activity. We propose that phosphorylation-dependent regulation of Hts/Adducin controls the level, localization, and activity of Hts/Adducin, influencing actin-based synapse elaboration and spectrin-based synapse stabilization. Hts/Adducin may define a mechanism to switch between synapse stability and dynamics.  相似文献   

10.
11.
12.
Noutel J  Hong YK  Leu B  Kang E  Chen C 《Neuron》2011,70(1):35-42
Mutations in MECP2 underlie the neurodevelopmental disorder Rett syndrome (RTT). One hallmark of RTT is relatively normal development followed by a later onset of symptoms. Growing evidence suggests an etiology of disrupted synaptic function, yet it is unclear how these abnormalities explain the clinical presentation of RTT. Here we investigate synapse maturation in Mecp2-deficient mice at a circuit with distinct developmental phases: the retinogeniculate synapse. We find that synapse development in mutants is comparable to that of wild-type littermates between postnatal days 9 and 21, indicating that initial phases of synapse formation, elimination, and strengthening are not significantly affected by MeCP2 absence. However, during the subsequent experience-dependent phase of synapse remodeling, the circuit becomes abnormal in mutants as retinal innervation of relay neurons increases and retinal inputs fail to strengthen further. Moreover, synaptic plasticity in response to visual deprivation is disrupted in mutants. These results suggest a crucial role for Mecp2 in experience-dependent refinement of synaptic circuits.  相似文献   

13.
Pumping up the synapse   总被引:1,自引:0,他引:1  
Penzes P 《Neuron》2007,56(6):942-944
Synchronized control of excitatory and inhibitory synapse maturation is crucial for normal brain wiring, while its dysfunction leads to neurodevelopmental disorders, including autism. A paper in this issue of Neuron identified a novel role for the KCC2 pump, also responsible for the GABAergic synapse developmental switch, in regulating spiny excitatory synapse maturation, implicating it in the coordinated maturation of inhibitory and excitatory synapses.  相似文献   

14.
The tripartite synapse denotes the junction of a pre- and postsynaptic neuron modulated by a synaptic astrocyte. Enhanced transmission probability and frequency of the postsynaptic current-events are among the significant effects of the astrocyte on the synapse as experimentally characterized by several groups. In this paper we provide a mathematical framework for the relevant synaptic interactions between neurons and astrocytes that can account quantitatively for both the astrocytic effects on the synaptic transmission and the spontaneous postsynaptic events. Inferred from experiments, the model assumes that glutamate released by the astrocytes in response to synaptic activity regulates store-operated calcium in the presynaptic terminal. This source of calcium is distinct from voltage-gated calcium influx and accounts for the long timescale of facilitation at the synapse seen in correlation with calcium activity in the astrocytes. Our model predicts the inter-event interval distribution of spontaneous current activity mediated by a synaptic astrocyte and provides an additional insight into a novel mechanism for plasticity in which a low fidelity synapse gets transformed into a high fidelity synapse via astrocytic coupling.  相似文献   

15.
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non‐synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high‐resolution biochemical analyses of specific synapse subpopulations. Employing knock‐in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high‐resolution biochemical analyses of specific synapse subpopulations in health and disease.  相似文献   

16.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α‐ and β‐neurexins. To test this hypothesis, we examined the functional effects of neuroligin‐1 mutations that impair only α‐neurexin binding, block both α‐ and β‐neurexin binding, or abolish neuroligin‐1 dimerization. Abolishing α‐neurexin binding abrogated neuroligin‐induced generation of neuronal synapses onto transfected non‐neuronal cells in the so‐called artificial synapse‐formation assay, even though β‐neurexin binding was retained. Thus, in this assay, neuroligin‐1 induces apparent synapse formation by binding to presynaptic α‐neurexins. In transfected neurons, however, neither α‐ nor β‐neurexin binding was essential for the ability of postsynaptic neuroligin‐1 to dramatically increase synapse density, suggesting a neurexin‐independent mechanism of synapse formation. Moreover, neuroligin‐1 dimerization was not required for either the non‐neuronal or the neuronal synapse‐formation assay. Nevertheless, both α‐neurexin binding and neuroligin‐1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin‐1 in transfected neurons. Thus, neuroligin‐1 performs diverse synaptic functions by mechanisms that include as essential components of α‐neurexin binding and neuroligin dimerization, but extend beyond these activities.  相似文献   

17.
Herrera  Albert A.  Zeng  Yu 《Brain Cell Biology》2003,32(5-8):817-833
The embryonic development of neuromuscular junctions consists of two successive epochs, an early period marked by exuberant synapse formation and a later period marked by synapse elimination. In the frog muscles we have studied, myogenesis is protracted and overlaps the periods of synapse formation and elimination. Thus, the formative and regressive events of synaptic development do not occur in synchrony across different fibers in the muscle. We propose that local activity orchestrates a shift from synaptogenesis to synapse elimination at the level of single muscle fibers. We also present evidence that perisynaptic Schwann cells and the expression of ion channels in the sarcolemma play important roles in the development of neuromuscular junctions. Questions for future study are outlined.  相似文献   

18.
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.  相似文献   

19.
Precisely how the accumulation of PrPSc causes the neuronal degeneration that leads to the clinical symptoms of prion diseases is poorly understood. Our recent paper showed that the clustering of specific glycosylphosphatidylinositol (GPI) anchors attached to PrP proteins triggered synapse damage in cultured neurons. First, we demonstrated that small, soluble PrPSc oligomers caused synapse damage via a GPI-dependent process. Our hypothesis, that the clustering of specific GPIs caused synapse damage, was supported by observations that cross-linkage of PrPC, either chemically or by monoclonal antibodies, also triggered synapse damage. Synapse damage was preceded by an increase in the cholesterol content of synapses and activation of cytoplasmic phospholipase A2 (cPLA2). The presence of a terminal sialic acid moiety, a rare modification of mammalian GPI anchors, was essential in the activation of cPLA2 and synapse damage induced by cross-linked PrPC. We conclude that the sialic acid modifies local membrane microenvironments (rafts) surrounding clustered PrP molecules resulting in aberrant activation of cPLA2 and synapse damage. A recent observation, that toxic amyloid-β assemblies cross-link PrPC, suggests that synapse damage in prion and Alzheimer diseases is mediated via a common molecular mechanism, and raises the possibility that the pharmacological modification of GPI anchors might constitute a novel therapeutic approach to these diseases.  相似文献   

20.
Dynactin is necessary for synapse stabilization   总被引:10,自引:0,他引:10  
Eaton BA  Fetter RD  Davis GW 《Neuron》2002,34(5):729-741
We present evidence that synapse retraction occurs during normal synaptic growth at the Drosophila neuromuscular junction (NMJ). An RNAi-based screen to identify the molecular mechanisms that regulate synapse retraction identified Arp-1/centractin, a subunit of the dynactin complex. Arp-1 dsRNA enhances synapse retraction, and this effect is phenocopied by a mutation in P150/Glued, also a dynactin component. The Glued protein is enriched within the presynaptic nerve terminal, and presynaptic expression of a dominant-negative Glued transgene enhances retraction. Retraction is associated with a local disruption of the synaptic microtubule cytoskeleton. Electrophysiological, ultrastructural, and immunohistochemical data support a model in which presynaptic retraction precedes disassembly of the postsynaptic apparatus. Our data suggests that dynactin functions locally within the presynaptic arbor to promote synapse stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号