首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Substrate-bound and soluble factors regulate neurite outgrowth and synapse formation during development, regeneration, and learning and memory. We report that sheath cells from CNS connectives and arterial cells from the anterior aorta of the sea slug, Aplysia californica, enhance neurite outgrowth from co-cultured Aplysia neurons. Sheath and arterial cell cultures contain several cell types, including fibrocytes, myocytes, and amoebocytes. When compared to controls (neurons with defined growth medium alone), the percentage of neurons with growth and the average neurite lengths are significantly enhanced by sheath and arterial cells at 48 h after plating of the neurons; these parameters are comparable to those of neurons cultured in medium containing hemolymph. Our results indicate that sheath cells produce substrate-bound factor(s) and arterial cells produce diffusible factor(s) that promote growth. These growth factors likely promote neuron survival and neurite outgrowth during neural plasticity exhibited in the adult CNS. Electronic Publication  相似文献   

2.
3.
Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.  相似文献   

4.
Many studies have shown a role of retinoid signalling in neurite outgrowth in vitro, and that the retinoic acid receptor (RAR) beta2 is critical for this process. We show here that RARbeta2 is expressed predominantly in dorsal root ganglia (DRG) neuronal subtypes that express neurofilament (NF) 200 and calcitonin gene-related peptide (CGRP), and that these neurons extend neurites in response to RA. We demonstrate that retinoid signalling has a role in neurite outgrowth in vivo, by showing that in a peripheral nerve crush model there is less neurite outgrowth from RARbeta null DRG compared to wild-type. We identify sonic hedgehog (Shh) as a downstream target of the RARbeta2 signalling pathway as it is expressed in the injured DRG of wild-type but not RARbeta null mice. This regulation is direct as when RARbeta2 is overexpressed in adult motoneurons Shh is induced in them. Finally we show that Shh alone cannot induce neurite outgrowth but potentiates RARbeta2 signalling in this process.  相似文献   

5.
Galectin-1 (GAL-1), a member of a family of β-galactoside binding animal lectins, is predominantly expressed in isolectin B4 (IB4)-binding small non-peptidergic (glial cell line-derived neurotrophic factor (GDNF)-responsive) sensory neurons in the sections of adult rat dorsal root ganglia (DRG), but its functional role and the regulatory mechanisms of its expression in the peripheral nervous system remain unclear. In the present study, both recombinant nerve growth factor (NGF) and GDNF (50 ng/ml) promoted neurite outgrowth from cultured adult rat DRG neurons, whereas GDNF, but not NGF, significantly increased the number of IB4-binding neurons and the relative protein expression of GAL-1 in the neuron-enriched culture of DRG. The GAL-1 expression in immortalized adult rat Schwann cells IFRS1 and DRG neuron-IFRS1 cocultures was unaltered by treatment with GDNF, which suggests that GDNF/GAL-1 signaling axis is more related to neurite outgrowth, rather than neuron-Schwann cell interactions. The GDNF-induced neurite outgrowth and GAL-1 upregulation were attenuated by anti-GDNF family receptor (RET) antibody and phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, suggesting that the neurite-outgrowth promoting activity of GDNF may be attributable, at least partially, to the upregulation of GAL-1 through RET-PI3K pathway. On the contrary, no significant differences were observed between GAL-1 knockout and wild-type mice in DRG neurite outgrowth in the presence or absence of GDNF. Considerable immunohistochemical colocalization of GAL-3 with GAL-1 in DRG sections and GDNF-induced upregulation of GAL-3 in cultured DRG neurons imply the functional redundancy between these galectins.  相似文献   

6.
The function of the central nervous system largely depends on growth and differentiation (neurite outgrowth) of neural cells and it is well established that growth factors, especially nerve growth factor NGF stimulate neurite outgrowth. However, additional factors are implicated in this process notably the redox state of the cells. For the first time we could demonstrate that the application of recombinant thioredoxin stimulates neurite outgrowth of PC12 cells to the same extend as NGF. Thioredoxin, a small redox protein is a major player in the cellular protein reduction system. An increased expression and secretion of thioredoxin is achieved by the application of the novel sialic acid precursor N-propionylmannosamine (ManNProp). From earlier studies it is known that this N-acylmannosamine analog stimulates significantly the neurite outgrowth in cell cultures. This finding would give new insights into the mechanism of the nerve-stimulatory action of ManNProp and demonstrates the novel role of thioredoxin during the regulation of nerve growth, encouraging further studies.  相似文献   

7.
Enteric nervous system (ENS) precursors undergo a complex process of cell migration, proliferation, and differentiation to form an integrated network of neurons and glia within the bowel wall. Although retinoids regulate ENS development, molecular and cellular mechanisms of retinoid effects on the ENS are not well understood. We hypothesized that retinoids might directly affect ENS precursor differentiation and proliferation, and tested that hypothesis using immunoselected fetal ENS precursors in primary culture. We now demonstrate that all retinoid receptors and many retinoid biosynthetic enzymes are present in the fetal bowel at about the time that migrating ENS precursors reach the distal bowel. We further demonstrate that retinoic acid (RA) enhances proliferation of subsets of ENS precursors in a time-dependent fashion and increases neuronal differentiation. Surprisingly, however, enteric neurons that develop in retinoid deficient media have dramatically longer neurites than those exposed to RA. This difference in neurite growth correlates with increased RhoA protein at the neurite tip, decreased Smurf1 (a protein that targets RhoA for degradation), and dramatically decreased Smurf1 mRNA in response to RA. Collectively these data demonstrate diverse effects of RA on ENS precursor development and suggest that altered fetal retinoid availability or metabolism could contribute to intestinal motility disorders.  相似文献   

8.
SPIN90 is an F-actin binding protein thought to play important roles in regulating cytoskeletal dynamics. It is known that SPIN90 is expressed during the early stages of neuronal development, but details of its localization and function in growth cones have not been fully investigated. Our immunocytochemical data show that SPIN90 is enriched throughout growth cones and neuronal shafts in young hippocampal neurons. We also found that its localization correlates with and depends upon the presence of F-actin. Detailed observation of primary cultures of hippocampal neurons revealed that SPIN90 knockout reduces both growth cone areas and in the numbers of filopodia, as compared to wild-type neurons. In addition, total neurite length, the combined lengths of the longest (axonal) and shorter (dendritic) neurites, was smaller in SPIN90 knockout neurons than wild-type neurons. Finally, Cdc42 activity was down-regulated in SPIN90 knockout neurons. Taken together, our findings suggest that SPIN90 plays critical roles in controlling growth cone dynamics and neurite outgrowth.  相似文献   

9.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   

10.
11.
The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this synctium undergoes remarkable shape change during development. Using cell ablation experiments, we show that three surrounding cell types affect utse development: the uterine toroids, the anchor cell and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for proper utse development and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1 and mig-10 promote utse cell outgrowth. Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and uterine toroid 2 (ut2), mediate proper utse outgrowth and we show roles in utse development for two genes expressed in the uterine toroids: the RASEF ortholog rsef-1 and Trio/unc-73. The SM expressed gene unc-53/NAV regulates utse cell shape; ablation of sex myoblasts (SMs), which generate uterine and vulval muscles, cause defects in utse morphology. Our results clarify the nature of the interactions that exist between utse and surrounding tissue, identify new roles for genes involved in cell outgrowth, and present the utse as a new model system for understanding cell shape change and, putatively, diseases associated with cell shape change.  相似文献   

12.
We test the hypothesis that accumulated metal in prey that is trophically available to one predator is not necessarily equally trophically available to another predator feeding on the same prey, given the variability between invertebrate digestive systems. We provided two predators, the neogastropod mollusc Hinia reticulata and the palaemonid decapod crustacean Palaemonetes varians, with the digestive glands and adductor muscles of four bivalves radiolabelled with Zn, Cd or Ag. The bivalves (the mussel Mytilus edulis, the clam Ruditapes philippinarum, the scallop Aequipecten opercularis, the oyster Crassostrea gigas) have different metal accumulation patterns with differential dependence on soluble and insoluble detoxification, as confirmed by fractionation of the prey tissues. We found no consistent significant difference between the AE of the two predators for the three trace metals accumulated in the same prey tissues. There were no significant correlations for either predator between percentages of metal in soluble form (or soluble form with organelle-associated metal) and percentage AE for any of the three metals, allowing the conclusion that both predators are assimilating each metal from more than the soluble and organelle-associated metal fractions. For neither predator did an increased percentage of Zn in the form of metal rich granules (MRG) affect its Zn AE, but increases in the percentages of both Cd and Ag bound to MRG decreased the AE of the relevant metal in P. varians but not H. reticulata. Thus the Cd and Ag in some Cd-rich and Ag-rich granules in the bivalve tissues are not as trophically available to P. varians as they are to H. reticulata. This interspecific difference confirms that the neogastropod has the stronger digestive and assimilative powers involving Cd and Ag bound in prey than the palaemonid decapod.  相似文献   

13.
A method for culturing medulla terminalis (MT) neurons in the eyestalk of Chinese shrimp, Fenneropenaeus chinensis, was first established. The neurons showed immediate outgrowth in the culture medium supplemented with glutamine, glucose and antibiotics. The cells grew for about 2-7 days and then sustained for a week or more. At least six types of neurons were distinguished on the basis of size and form of soma and outgrowth pattern of cells.  相似文献   

14.
Morphogenesis during eye development requires retinoic acid (RA) receptors plus RA-synthesizing enzymes, and loss of RA signaling leads to ocular disorders associated with loss of Pitx2 expression in perioptic mesenchyme. Several Wnt signaling components are expressed in ocular tissues during eye development including Dkk2, encoding an inhibitor of Wnt/β-catenin signaling, which was previously shown to be induced by Pitx2 in the perioptic mesenchyme. Here, we investigated potential cross-talk between RA and Wnt signaling during ocular development. Genetic studies using Raldh1/Raldh3 double null mice deficient for ocular RA synthesis demonstrated that Pitx2 and Dkk2 were both down-regulated in perioptic mesenchyme. Chromatin immunoprecipitation and gel mobility shift studies demonstrated the existence of a DR5 RA response element upstream of Pitx2 that binds all three RA receptors in embryonic eye. Axin2, an endogenous readout of Wnt/β-catenin signaling, was up-regulated in cornea and perioptic mesenchyme of RA deficient embryos. Also, expression of Wnt5a was expanded in perioptic mesenchyme of RA deficient eyes. Our findings demonstrate excessive activation of Wnt signaling in the perioptic mesenchyme of RA deficient mice which may be responsible for abnormal development leading to defective optic cup, cornea, and eyelid morphogenesis.  相似文献   

15.
Glial cell line-derived neurotrophic factor (GDNF) is expressed in the gastrointestinal tract of the developing mouse and appears to play an important role in the migration of enteric neuron precursors into and along the small and large intestines. Two other GDNF family members, neurturin and artemin, are also expressed in the developing gut although artemin is only expressed in the esophagus. We examined the effects of GDNF, neurturin, and artemin on neural crest cell migration and neurite outgrowth in explants of mouse esophagus, midgut, and hindgut. Both GDNF and neurturin induced neural crest cell migration and neurite outgrowth in all regions examined. In the esophagus, the effect of GDNF on migration and neurite outgrowth declined with age between E11.5 and E14.5, but neurturin still had a strong neurite outgrowth effect at E14.5. Artemin did not promote neural migration or neurite outgrowth in any region investigated. The effects of GDNF family ligands are mediated by the Ret tyrosine kinase. We examined the density of neurons in the esophagus of Ret-/- mice, which lack neurons in the small and large intestines. The density of esophageal neurons in Ret-/- mice was only about 4% of the density of esophageal neurons in Ret+/- and Ret+/+ mice. These results show that GDNF and neurturin promote migration and neurite outgrowth of crest-derived cells in the esophagus as well as the intestine. Moreover, like intestinal neurons, the development of esophageal neurons is largely Ret-dependent.  相似文献   

16.
Growth cones are dynamic membrane structures that migrate to target tissue by rearranging their cytoskeleton in response to environmental cues. The lipid phosphatidylinositol (4,5) bisphosphate (PIP2) resides on the plasma membrane of all eukaryotic cells and is thought to be required for actin cytoskeleton rearrangements. Thus PIP2 is likely to play a role during neuron development, but this has never been tested in vivo. In this study, we have characterized the PIP2 synthesizing enzyme Type I PIP kinase (ppk-1) in Caenorhabditis elegans. PPK-1 is strongly expressed in the nervous system, and can localize to the plasma membrane. We show that PPK-1 purified from C. elegans can generate PIP2in vitro and that overexpression of the kinase causes an increase in PIP2 levels in vivo. In developing neurons, PPK-1 overexpression leads to growth cones that become stalled, produce ectopic membrane projections, and branched axons. Once neurons are established, PPK-1 overexpression results in progressive membrane overgrowth and degeneration during adulthood. These data suggest that overexpression of the Type I PIP kinase inhibits growth cone collapse, and that regulation of PIP2 levels in established neurons may be important to maintain structural integrity and prevent neuronal degeneration.  相似文献   

17.
18.
The high rate of glycolysis despite the presence of oxygen in tumor cells (Warburg effect) suggests an important role for this process in cell division. The glycolytic rate is dependent on the cellular concentration of fructose 2,6-bisphosphate (Fru-2,6-P2), which, in turn, is controlled by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2). The ubiquitous PFK-2 isoenzyme (uPFK-2, alternatively named UBI2K5 or ACG) coded by the pfkfb3 gene is induced by different stimuli (serum, progesterone, insulin, hypoxia, etc.) and has the highest kinase/phosphatase activity ratio amongst all PFK-2 isoenzymes discovered to date, which is consistent with its role as a powerful activator of glycolysis. uPFK-2 is expressed in brain, placenta, transformed cells and proliferating cells. In the present work, we analyze the impact of small interfering RNA (siRNA)-induced silencing of uPFK-2 on the inhibition of cell proliferation. HeLa cells treated with uPFK-2 siRNA showed a decrease in uPFK-2 RNA levels measured at 24h. uPFK-2 protein levels were severely depleted at 48-72h when compared with cells treated with an unrelated siRNA, correlating with decreased glycolytic activity, Fru-2,6-P2, lactate and ATP concentrations. These metabolic changes led to reduced viability, cell-cycle delay and an increase in the population of apoptotic cells. Moreover, uPFK-2 suppression inhibited anchorage-independent growth. The results obtained highlight the importance of uPFK-2 on the regulation of glycolysis, on cell viability and proliferation and also on anchorage-independent growth. These data underscore the potential for uPFK-2 as an effective tumor therapeutic target.  相似文献   

19.
The L3-secreted Ancylostoma Secreted Protein-2 from the human hookworm Necator americanus (Na-ASP-2) has been selected as a candidate vaccine antigen in anticipation of clinical trials. Its crystal structure revealed that Na-ASP-2 has structural and charge similarities to CC-chemokines, suggesting that it might act as a chemokine mimic when released by the infective larvae during tissue migration. Using the air pouch model of acute inflammation, we found that Na-ASP-2 induced a significant leukocyte influx to the skin pouch, mostly comprised of neutrophils (60%) and monocytes (30%) that was transient and resolved in 24h. Other hookworm larval proteins did not cause any inflammatory leukocytes to migrate into air pouches. In vitro chemotaxis assays confirmed our results and demonstrated that leukocyte migration was a direct effect of Na-ASP-2 exposure and not caused by other molecules released by host cells in the inflammatory microenvironment or by the expression vector.  相似文献   

20.
The effects of Cryptosporidium andersoni on human or bovine epithelia are poorly defined. Epidermal growth factor inhibits colonisation of the gastrointestinal epithelium with bacteria and the enteric protozoan parasite Giardia lamblia. This study characterised whether C. andersoni infects human or bovine epithelial cells in vitro, assessed its impact on apoptosis and tight junctional Zonula-Occludens-1, and determined whether these effects may be altered by epidermal growth factor. Monolayers of human colonic CaCo(2) cells, SCBN (non-malignant small intestinal epithelial cells), and Madin Darby bovine kidney epithelial cell lines (MDBK and NBL-1) were grown to confluency in Dulbecco's Modified Eagle Medium. Monolayers were assigned to one of three experimental groups-(1) control: exposed to culture medium alone; (2) untreated: exposed to 10(3) live C. andersoni oocysts or (3) epidermal growth factor-treated: apically pre-treated with recombinant human epidermal growth factor and then exposed to Cryptosporidium. Oocyst viability, infection with Cryptosporidium, apoptosis, and integrity of tight junctional Zonula-Occludens-1 were assessed. In addition, live Cryptosporidium oocysts were incubated with epidermal growth factor to assess whether epidermal growth factor had cryptosporicidial activity. Cryptosporidium andersoni oocysts infected all human and bovine monolayers, increased nuclear fragmentation, and disrupted Zonula-Occludens-1. Apical epidermal growth factor significantly reduced infection with C. andersoni in all cell lines and inhibited the Cryptosporidium-induced apoptosis and disruption of Zonula-Occludens-1. Epidermal growth factor did not affect oocyst viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号