首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunophilin, FK506-binding protein (FKBP12), is an essential component of the ryanodine receptor channel complex of skeletal muscle (RyR1) and modulates intracellular calcium signaling from the nedoplasmic reticulum. The cardiac muscle RyR isoform (RyR2) specifically associates with a distinct FKBP isoform, FKBP12.6. Previous studies have led to the proposal that the central domain of RyR1 exclusively mediates the interaction with FKBP12. To characterize the topography of the FKBP 12.6 binding site on the human cardiac RyR2, we have applied complementary protein-protein interaction methods using both in vivo yeast two-hybrid analysis and in vitro immunoprecipitation experiments. Our results indicate an absence of interaction of FKBP12/12.6 with fragments containin the central domain of either RyR1, RyR2, or RyR3. Furthermore, no interaction was detected between FKBP12.6 with a series of overlapping fragments encompassing the entire RyR2, either individually or in multiple combination. We also found that a distinct, alternatively spliced variant of FKBP12.6 was unable to interact with RyR. In contrast, we successfully demonstrated a robust association between the cytoplasmic domain of transforming growth factor-β receptor type I and both FKBP12 and FKBP12.6 in parallel positive control experiments, as well as between native RyR2 and FKBP12.6. These results suggest that the specific interaction of FKBP12.6 with RyR2, and generally of FKBPs with any RyR isoform, is not readily reconstituted by peptide fragments corresponding to central RyR domains. Further structural analysis will be necessary to unravel this intricate signaling system and the current model of FKBP-12-RyR interaction via a single, central RyR, epitope may therefore require revision.  相似文献   

2.
The cardiac isoform of the ryanodine receptor (RyR2) from dog binds predominantly a 12.6-kDa isoform of the FK506-binding protein (FKBP12.6), whereas RyR2 from other species binds both FKBP12.6 and the closely related isoform FKBP12. The role played by FKBP12.6 in modulating calcium release by RyR2 is unclear at present. We have used cryoelectron microscopy and three-dimensional (3D) reconstruction techniques to determine the binding position of FKBP12.6 on the surface of canine RyR2. Buffer conditions that should favor the "open" state of RyR2 were used. Quantitative comparison of 3D reconstructions of RyR2 in the presence and absence of FKBP12.6 reveals that FKBP12.6 binds along the sides of the square-shaped cytoplasmic region of the receptor, adjacent to domain 9, which forms part of the four clamp (corner-forming) structures. The location of the FKBP12.6 binding site on "open" RyR2 appears similar, but slightly displaced (by 1-2 nm) from that found previously for FKBP12 binding to the skeletal muscle ryanodine receptor that was in the buffer that favors the "closed" state. The conformation of RyR2 containing bound FKBP12.6 differs considerably from that depleted of FKBP12.6, particularly in the transmembrane region and in the clamp structures. The x-ray structure of FKBP12.6 was docked into the region of the 3D reconstruction that is attributable to bound FKBP12.6, to show the relative orientations of amino acid residues (Gln-31, Asn-32, Phe-59) that have been implicated as being critical in interactions with RyR2. A thorough understanding of the structural basis of RyR2-FKBP12.6 interaction should aid in understanding the roles that have been proposed for FKBP12.6 in heart failure and in certain forms of sudden cardiac death.  相似文献   

3.
Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca(2+)-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca(2+)-induced Ca(2+)-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca(2+), whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 μM) increased Ca(2+)-wave frequency and decreased the SR Ca(2+)-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12.We provide a biophysical analysis of the mechanisms by which FK-binding proteins can regulate RyR2 single-channel gating. Our data indicate that FKBP12, in addition to FKBP12.6, may be important in regulating RyR2 function in the heart. In heart failure, it is possible that an alteration in the dual regulation of RyR2 by FKBP12 and FKBP12.6 may occur. This could contribute towards a higher RyR2 open probability, 'leaky' RyR2 channels and Ca(2+)-dependent arrhythmias.  相似文献   

4.
Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT.  相似文献   

5.
The 12.6-kDa FK506-binding protein (FKBP12.6) interacts with the cardiac ryanodine receptor (RyR2) and modulates its channel function. However, the molecular basis of FKBP12.6-RyR2 interaction is poorly understood. To investigate the significance of the isoleucine-proline (residues 2427-2428) dipeptide epitope, which is thought to form an essential part of the FKBP12.6 binding site in RyR2, we generated single and double mutants, P2428Q, I2427E/P2428A, and P2428A/L2429E, expressed them in HEK293 cells, and assessed their ability to bind GST-FKBP12.6. None of these mutations abolished GST-FKBP12.6 binding, indicating that this isoleucine-proline motif is unlikely to form the core of the FKBP12.6 binding site in RyR2. To systematically define the molecular determinants of FKBP12.6 binding, we constructed a series of internal and NH(2)- and COOH-terminal deletion mutants of RyR2 and examined the effect of these deletions on GST-FKBP12.6 binding. These deletion analyses revealed that the first 305 NH(2)-terminal residues and COOH-terminal residues 1937-4967 are not essential for GST-FKBP12.6 binding, whereas multiple sequences within a large region between residues 305 and 1937 are required for GST-FKBP12.6 interaction. Furthermore, an NH(2)-terminal fragment containing the first 1937 residues is sufficient for GST-FKBP12.6 binding. Co-expression of overlapping NH(2) and COOH-terminal fragments covering the entire sequence of RyR2 produced functional channels but did not restore GST-FKBP12.6 binding. These data suggest that FKBP12.6 binding is likely to be conformationdependent. Binding of FKBP12.6 to the NH(2)-terminal domain may play a role in stabilizing the conformation of this region.  相似文献   

6.
The 12.6-kDa FK506-binding protein (FKBP12.6) is considered to be a key regulator of the cardiac ryanodine receptor (RyR2), but its precise role in RyR2 function is complex and controversial. In the present study we investigated the impact of FKBP12.6 removal on the properties of the RyR2 channel and the propensity for spontaneous Ca(2+) release and the occurrence of ventricular arrhythmias. Single channel recordings in lipid bilayers showed that FK506 treatment of recombinant RyR2 co-expressed with or without FKBP12.6 or native canine RyR2 did not induce long-lived subconductance states. [(3)H]Ryanodine binding studies revealed that coexpression with or without FKBP12.6 or treatment with or without FK506 did not alter the sensitivity of RyR2 to activation by Ca(2+) or caffeine. Furthermore, single cell Ca(2+) imaging analyses demonstrated that HEK293 cells co-expressing RyR2 and FKBP12.6 or expressing RyR2 alone displayed the same propensity for spontaneous Ca(2+) release or store overload-induced Ca(2+) release (SOICR). FK506 increased the amplitude and decreased the frequency of SOICR in HEK293 cells expressing RyR2 with or without FKBP12.6, indicating that the action of FK506 on SOICR is independent of FKBP12.6. As with recombinant RyR2, the conductance and ligand-gating properties of single RyR2 channels from FKBP12.6-null mice were indistinguishable from those of single wild type channels. Moreover, FKBP12.6-null mice did not exhibit enhanced susceptibility to stress-induced ventricular arrhythmias, in contrast to previous reports. Collectively, our results demonstrate that the loss of FKBP12.6 has no significant effect on the conduction and activation of RyR2 or the propensity for spontaneous Ca(2+) release and stress-induced ventricular arrhythmias.  相似文献   

7.

Background

This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6).

Methods

Wild-type (WT) RyR2 central domain constructs (G2236to G2491) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation.

Results

The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~ 200–400 μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found.

Conclusions

The RyR2 central domain, expressed as a ‘correctly’ folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP.

General significance

Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.  相似文献   

8.
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is the major source of calcium (Ca2+) required for cardiac muscle excitation-contraction (EC) coupling. The channel is a tetramer comprised of four type 2 RyR polypeptides (RyR2) and four FK506 binding proteins (FKBP12.6). We show that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (Po). Using cosedimentation and coimmunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein, mAKAP. In failing human hearts, RyR2 is PKA hyperphosphorylated, resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.  相似文献   

9.
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chinese hamster ovary cells, CHOhRyR2) had similar resting cytoplasmic Ca2+ levels ([Ca2+]c) to wild-type CHO cells (CHOWT) but exhibited increased cytoplasmic Ca2+ flux associated with decreased cell viability and proliferation. Intracellular Ca2+ flux increased with human RyR2 (hRyR2) expression levels and determined the extent of phenotypic modulation. Co-expression of FKBP12.6, but not FKBP12, or incubation of cells with ryanodine suppressed intracellular Ca2+ flux and restored normal cell viability and proliferation. Restoration of normal phenotype was independent of the status of resting [Ca2+]c or ER Ca2+ load. Heparin inhibition of endogenous inositol trisphosphate receptors (IP3R) had little effect on intracellular Ca2+ handling or viability. However, purinergic stimulation of endogenous IP3R resulted in apoptotic cell death mediated by hRyR2 suggesting functional interaction occurred between IP3R and hRyR2 Ca2+ release channels. These data demonstrate that defective regulation of RyR causes altered cellular phenotype via profound perturbations in intracellular Ca2+ signaling and highlight a key modulatory role of FKBP12.6 in hRyR2 Ca2+ channel function.  相似文献   

10.
cADP ribose (cADPR) serves as second messenger to activate the ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) and mobilize intracellular Ca(2+) in vascular smooth muscle cells. However, the mechanisms mediating the effect of cADPR remain unknown. The present study was designed to determine whether FK-506 binding protein 12.6 (FKBP12.6), an accessory protein of the RyRs, plays a role in cADPR-induced activation of the RyRs. A 12.6-kDa protein was detected in bovine coronary arterial smooth muscle (BCASM) and cultured CASM cells by being immunoblotted with an antibody against FKBP12, which also reacted with FKBP12.6. With the use of planar lipid bilayer clamping techniques, FK-506 (0.01-10 microM) significantly increased the open probability (NP(O)) of reconstituted RyR/Ca(2+) release channels from the SR of CASM. This FK-506-induced activation of RyR/Ca(2+) release channels was abolished by pretreatment with anti-FKBP12 antibody. The RyRs activator cADPR (0.1-10 microM) markedly increased the activity of RyR/Ca(2+) release channels. In the presence of FK-506, cADPR did not further increase the NP(O) of RyR/Ca(2+) release channels. Addition of anti-FKBP12 antibody also completely blocked cADPR-induced activation of these channels, and removal of FKBP12.6 by preincubation with FK-506 and subsequent gradient centrifugation abolished cADPR-induced increase in the NP(O) of RyR/Ca(2+) release channels. We conclude that FKBP12.6 plays a critical role in mediating cADPR-induced activation of RyR/Ca(2+) release channels from the SR of BCASM.  相似文献   

11.
FKBP12 binding modulates ryanodine receptor channel gating   总被引:2,自引:0,他引:2  
The ryanodine receptor (RyR1)/calcium release channel on the sarcoplasmic reticulum of skeletal muscle is comprised of four 565,000-dalton RyR1s, each of which binds one FK506 binding protein (FKBP12). RyR1 is required for excitation-contraction coupling in skeletal muscle. FKBP12, a cis-trans peptidyl-prolyl isomerase, is required for the normal gating of the RyR1 channel. In the absence of FKBP12, RyR1 channels exhibit increased gating frequency, suggesting that FKBP12 "stabilizes" the channel in the open and closed states. We now show that substitution of a Gly, Glu, or Ile for Val2461 in RyR1 prevents FKBP12 binding to RyR1, resulting in channels with increased gating frequency. In the case of the V2461I mutant RyR1, normal channel function can be restored by adding FKBP12.6, an isoform of FKBP12. These data identify Val2461 as a critical residue required for FKBP12 binding to RyR1 and demonstrate the functional role for FKBP12 in the RyR1 channel complex.  相似文献   

12.
The recently devised domain peptide probe technique was used to identify and characterize critical domains of the cardiac ryanodine receptor (RyR2). A synthetic peptide corresponding to the Gly(2460)-Pro(2495) domain of the RyR2, designated DPc10, enhanced the ryanodine binding activity and increased the sensitivity of the RyR2 to activating Ca(2+): the effects that resemble the typical phenotypes of cardiac diseases. A single Arg-to-Ser mutation made in DPc10, mimicking the recently reported Arg(2474)-to-Ser(2474) human mutation, abolished all of these effects that would have been produced by DPc10. On the basis of the principle of the domain peptide probe approach (see Model 1), these results indicate that the in vivo RyR2 domain corresponding to DPc10 plays a key role in the cardiac channel regulation and in the pathogenic mechanism. This domain peptide approach opens the new possibility in the studies of the regulatory and pathogenic mechanisms of the cardiac Ca(2+) channel.  相似文献   

13.
FK506-binding protein (FKBP12) has been found to be associated with the skeletal muscle ryanodine receptor (RyR1) (calcium release channel), whereas FKBP12.6, a novel isoform of FKBP, is selectively associated with the cardiac ryanodine receptor (RyR2). For both RyRs, the stoichiometry is 4 FKBP/RyR. Although FKBP12.6 differs from FKBP12 by only 18 of 108 amino acids, FKBP12.6 selectively binds to RyR2 and exchanges with bound FKBP12.6 of RyR2, whereas both FKBP isoforms bind to RyR1 and exchange with bound FKBP12 of RyR1. To assess the amino acid residues of FKBP12.6 that are critical for selective binding to RyR2, the residues of FKBP12.6 that differ with FKBP12 were mutated to the respective residues of FKBP12. RyR2 of cardiac sarcoplasmic reticulum, prelabeled by exchange with [35S]FKBP12.6, was used as assay system for binding/exchange with the mutants. The triple mutant (Q31E/N32D/F59W) of FKBP12.6 was found to lack selective binding to the cardiac RyR2, comparable with that of FKBP12.0. In complementary studies, mutations of FKBP12 to the three critical amino acids of FKBP12.6, conferred selective binding to RyR2. Each of the FKBP12.6 and FKBP12 mutants retained binding to the skeletal muscle RyR1. We conclude that three amino acid residues (Gln31, Asn32, and Phe59) of human FKBP12.6 account for the selective binding to cardiac RyR2.  相似文献   

14.
Ryanodine receptors (RyRs) are large conductance intracellular channels controlling intracellular calcium homeostasis in myocytes, neurons, and other cell types. Loss of RyR’s constitutive cytoplasmic partner FKBP results in channel sensitization, dominant subconductance states, and increased cytoplasmic Ca2+. FKBP12 binds to RyR1’s cytoplasmic assembly 130?Å away from the ion gate at four equivalent sites in the RyR1 tetramer. To understand how FKBP12 binding alters RyR1’s channel properties, we studied the 3D structure of RyR1 alone in the closed conformation in the context of the open and closed conformations of FKBP12-bound RyR1. We analyzed the metrics of conformational changes of existing structures, the structure of the ion gate, and carried out multivariate statistical analysis of thousands of individual cryoEM RyR1 particles. We find that under closed state conditions, in the presence of FKBP12, the cytoplasmic domain of RyR1 adopts an upward conformation, whereas absence of FKBP12 results in a relaxed conformation, while the ion gate remains closed. The relaxed conformation is intermediate between the RyR1-FKBP12 complex closed (upward) and open (downward) conformations. The closed-relaxed conformation of RyR1 appears to be consistent with a lower energy barrier separating the closed and open states of RyR1-FKBP12, and suggests that FKBP12 plays an important role by restricting conformations within RyR1’s conformational landscape.  相似文献   

15.
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [3H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.  相似文献   

16.
Ca+-induced Ca2+ release (CICR) in the heart involves local Ca2+ signaling between sarcolemmal L-type Ca2+ channels (dihydropyridine receptors, DHPRs) and type 2 ryanodine receptors (RyR2s) in the sarcoplasmic reticulum (SR). We reconstituted cardiac-like CICR by expressing a cardiac dihydropyridine-insensitive (T1066Y/Q1070M) 1-subunit (1CYM) and RyR2 in myotubes derived from RyR1-knockout (dyspedic) mice. Myotubes expressing 1CYM and RyR2 were vesiculated and exhibited spontaneous Ca2+ oscillations that resulted in chaotic and uncontrolled contractions. Coexpression of FKBP12.6 (but not FKBP12.0) with 1CYM and RyR2 eliminated vesiculations and reduced the percentage of myotubes exhibiting uncontrolled global Ca2+ oscillations (63% and 13% of cells exhibited oscillations in the absence and presence of FKBP12.6, respectively). 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited robust and rapid electrically evoked Ca2+ transients that required extracellular Ca2+. Depolarization-induced Ca2+ release in 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a bell-shaped voltage dependence that was fourfold larger than that of myotubes expressing 1CYM alone (maximal fluorescence change was 2.10 ± 0.39 and 0.54 ± 0.07, respectively), despite similar Ca2+ current densities. In addition, the gain of CICR in 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a nonlinear voltage dependence, being considerably larger at threshold potentials. We used this molecular model of local 1C-RyR2 signaling to assess the ability of FKBP12.6 to inhibit spontaneous Ca2+ release via a phosphomimetic mutation in RyR2 (S2808D). Electrically evoked Ca2+ release and the incidence of spontaneous Ca2+ oscillations did not differ in wild-type RyR2- and S2808D-expressing myotubes over a wide range of FKBP12.6 expression. Thus a negative charge at S2808 does not alter in situ regulation of RyR2 by FKBP12.6. heart failure; dihydropyridine receptor; excitation-contraction coupling  相似文献   

17.
Dantrolene stabilizes domain interactions within the ryanodine receptor   总被引:3,自引:0,他引:3  
Interdomain interactions between N-terminal and central domains serving as a "domain switch" are believed to be essential to the functional regulation of the skeletal muscle ryanodine receptor-1 Ca(2+) channel. Mutational destabilization of the domain switch in malignant hyperthermia (MH), a genetic sensitivity to volatile anesthetics, causes functional instability of the channel. Dantrolene, a drug used to treat MH, binds to a region within this proposed domain switch. To explore its mechanism of action, the effect of dantrolene on MH-like channel activation by the synthetic domain peptide DP4 or anti-DP4 antibody was examined. A fluorescence probe, methylcoumarin acetate, was covalently attached to the domain switch using DP4 as a delivery vehicle. The magnitude of domain unzipping was determined from the accessibility of methylcoumarin acetate to a macromolecular fluorescence quencher. The Stern-Volmer quenching constant (K(Q)) increased with the addition of DP4 or anti-DP4 antibody. This increase was reversed by dantrolene at both 37 and 22 degrees C and was unaffected by calmodulin. [(3)H]Ryanodine binding to the sarcoplasmic reticulum and activation of sarcoplasmic reticulum Ca(2+) release, both measures of channel activation, were enhanced by DP4. These activities were inhibited by dantrolene at 37 degrees C, yet required the presence of calmodulin at 22 degrees C. These results suggest that the mechanism of action of dantrolene involves stabilization of domain-domain interactions within the domain switch, preventing domain unzipping-induced channel dysfunction. We suggest that temperature and calmodulin primarily affect the coupling between the domain switch and the downstream mechanism of regulation of Ca(2+) channel opening rather than the domain switch itself.  相似文献   

18.
We have determined the structure of a domain peptide corresponding to the extreme 19 C-terminal residues of the ryanodine receptor Ca2+ release channel. We examined functional interactions between the peptide and the channel, in the absence and in the presence of the regulatory protein Homer. The peptide was partly alpha-helical and structurally homologous to the C-terminal end of the T1 domain of voltage-gated K+ channels. The peptide (0.1-10 microM) inhibited skeletal ryanodine receptor channels when the cytoplasmic Ca2+ concentration was 1 microM; but with 10 microM cytoplasmic Ca2+, skeletal ryanodine receptors were activated by < or = 1.0 microM peptide and inhibited by 10 microM peptide. Cardiac ryanodine receptors on the other hand were inhibited by all peptide concentrations, at both Ca2+ concentrations. When channels did open in the presence of the peptide, they were more likely to open to substate levels. The inhibition and increased fraction of openings to subconductance levels suggested that the domain peptide might destabilise inter-domain interactions that involve the C-terminal tail. We found that Homer 1b not only interacts with the channels, but reduces the inhibitory action of the C-terminal tail peptide, perhaps by stabilizing inter-domain interactions and preventing their disruption.  相似文献   

19.
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.  相似文献   

20.
It is known that the two types of FK506-binding proteins FKBP12 and FKBP12.6 are tightly associated with the skeletal (RyR1) and cardiac ryanodine receptors (RyR2), respectively, and their interactions are important for channel functions of the RyR. In the case of cardiac muscle, three amino acid residues (Gln-31, Asn-32, and Phe-59) of FKBP12.6 could be essential for the selective binding to RyR2 (Xin, H. B., Rogers, K., Qi, Y., Kanematsu, T., and Fleischer, S. (1999) J. Biol. Chem. 274, 15315-15319). In this study to identify amino acid residues of FKBP12 that are important for the selective binding to RyR1, we mutated 9 amino acid residues of FKBP12 that differ from the counterparts of FKBP12.6 (Q3E, R18A, E31Q, D32N, M49R, R57A, W59F, H94A, and K105A), and we examined binding properties of these mutants to RyR1 by in vitro binding assay by using glutathione S-transferase-fused proteins of the mutants and Triton X-100-solubilized, FKBP12-depleted rabbit skeletal sarcoplasmic reticulum vesicles. Among the nine mutants tested, only Q3E and R18A lost their selective binding ability to RyR1. Furthermore, co-immunoprecipitation of RyR1 with 33 various mutants for the 9 positions produced by introducing different size, charge, and hydrophobicity revealed that an integration of the hydrogen bonds by the irreplaceable Gln-3 and the hydrophobic interactions by the residues Arg-18 and Met-49 could be a possible mechanism for the binding of FKBP12 to RyR1. Therefore, these results suggest that the N-terminal regions of FKBP12 (Gln-3 and Arg-18) and Met-49 are essential and unique for binding of FKBP12 to RyR1 in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号