首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The vacuolar H+-ATPase is inhibited with high specificity and potency by bafilomycin and concanamycin, macrolide antibiotics with similar structures. We previously reported that mutation at three residues in subunit c of the vacuolar ATPase from Neurospora crassa conferred strong resistance to bafilomycin but little or no resistance to concanamycin (Bowman, B. J., and Bowman, E. J. (2002) J. Biol. Chem. 277, 3965-3972). We have identified additional mutated sites in subunit c that confer resistance to bafilomycin. Furthermore, by subjecting a resistant mutant to a second round of mutation we isolated strains with increased resistance to both bafilomycin and concanamycin. In all of these strains the second mutation is also in subunit c, suggesting it forms at least part of the concanamycin binding site. Site-directed mutagenesis of the gene encoding subunit c in Saccharomyces cerevisiae showed that single mutations in each of the residues identified in one of the double mutants of N. crassa conferred resistance to both bafilomycin and concanamycin. Mutations at the corresponding sites in the VMA11 and VMA16 genes of S. cerevisiae, which encode the c' and c" subunits, did not confer resistance to the drugs. In all, nine residues of subunit c have been implicated in drug binding. The positions of these residues support a model in which the drug binding site is a pocket formed by helices 1, 2, and 4. We hypothesize that the drugs inhibit by preventing the rotation of the c subunits.  相似文献   

2.
We have characterized the vma-10 gene which encodes the G subunit of the vacuolar ATPase in Neurospora crassa. The gene is somewhat unusual in filamentous fungi because it contains five introns, comprising 71% of the region between the translation start and stop codons. The 5 untranslated region of the gene contains several elements that have been identified in other genes that encode subunits of the vacuolar ATPase in N. crassa. A comparison of G subunits from N. crassa, S. cerevisiae, and animal cells showed that the N-terminal half of the polypeptide shows the highest degree of sequence conservation. Most striking is the observation that this region could form an alpha helix in which all of the conserved residues are clustered on one face. Subunit G appears to be homologous to the b subunit found in F-type ATPases. The major difference between the b and G subunits is the lack of a membrane-spanning region in the G subunit. We have also identified homologous subunits in the operons which encode V-type ATPases in a eubacterium, Enterrococcus hirae, and an archaebacterium, Methanococcus jannaschii. As in eukaryotic vacuolar ATPases the G subunit homologs lack a membrane-spanning region. Although the b and G subunits appear to be derived from a common ancestor, significant changes have evolved. In F-type and V-type ATPases these subunits can have zero, one, or two membrane-spanning regions and can also differ significantly in the number of copies per enzyme.  相似文献   

3.
The atpA and atpB genes coding for the alpha and beta subunits, respectively, of membrane ATPase were cloned from a methanogen Methanosarcina barkeri, and the amino acid sequences of the two subunits were deduced from the nucleotide sequences. The methanogenic alpha (578 amino acid residues) and beta (459 amino acid residues) subunits were highly homologous to the large and small subunits, respectively, of vacuolar H+-ATPases; 52% of the residues of the methanogenic alpha subunit were identical with those of the large subunit of vacuolar enzyme of carrot or Neurospora crassa, respectively, and 59, 60, and 59% of the residues of the methanogenic beta subunit were identical with those of the small subunits of N. crassa, Arabidopsis thaliana, and Sacharomyces cerevisiae, respectively. The methanogenic subunits were also highly homologous to the corresponding subunits of Sulfolobus acidocaldarius ATPase. The methanogenic alpha and beta subunits showed 22 and 24% identities with the beta and the alpha subunits of Escherichia coli F1, respectively. Furthermore, important amino acid residues identified genetically in the E. coli enzyme were conserved in the methanogenic enzyme. This sequence conservation suggests that vacuolar, F1, methanogenic, and S. acidocaldarius ATPases were derived from a common ancestral enzyme.  相似文献   

4.
The vacuolar membrane of Neurospora crassa contains a H+-translocating ATPase composed of at least three subunits with approximate molecular weights of 70,000, 60,000, and 15,000. Both genomic and cDNA clones encoding the largest subunit, which appears to contain the active site of the enzyme, have been isolated and sequenced. The gene for this subunit, designated vma-1, contains six small introns (60-131 base pairs) and encodes a hydrophilic protein of 607 amino acids, Mr 67,121. Within the sequence is a putative nucleotide-binding region, consistent with the proposal that this subunit contains the site of ATP hydrolysis. This 67-kDa polypeptide shows high homology (62% identical residues overall and 84% in the middle of the protein) to the analogous polypeptide of a higher plant vacuolar ATPase. The hypothesis that the vacuolar ATPase is related to F0F1 ATPases is strongly supported by the finding of considerable homology between the 67-kDa subunit of the Neurospora vacuolar ATPase and both the alpha and beta subunits of F0F1 ATPases.  相似文献   

5.
A and B subunits of the V-type Na+-ATPase from Enterococcus hirae were suggested to possess nucleotide binding sites (Murata, T. et al., J. Biochem., 132, 789-794 (2002)), although the B subunit did not have the consensus sequence for nucleotide binding. To further characterize the binding sites in the V-ATPase, we did the photoaffinity labeling study using 8-azido-[alpha-32P]ATP. A and B subunits were labeled with 8-azido-[alpha-32P]ATP when analysed with SDS polyacrylamide gel electrophoresis. The peptide fragment of A subunit obtained by lysyl endopeptidase digestion after labeling showed a molecular size of 9 kDa and its amino acid sequencing revealed that it corresponded to residues Arg423-Lys494. The peptide fragment from B subunit after photoaffinity labeling and lysyl endopeptidase digestion showed the size of 5 kDa and corresponded to residues Phe404-Lys443. In our structure model, these peptides were close to the adenine ring of ATP. We suggest that non-catalytic B subunit of E. hirae V-ATPase has a nucleotide binding site, similarly to eukaryotic V-ATPases and F-ATPases.  相似文献   

6.
To address questions about the structure of the vacuolar ATPase, we have generated mutant strains of Neurospora crassa defective in six subunits, C, H, a, c, c', and c'. Except for strains lacking subunit c', the mutant strains were indistinguishable from each other in most phenotypic characteristics. They did not accumulate arginine in the vacuoles, grew poorly at pH 5.8 with altered morphology, and failed to grow at alkaline pH. Consistent with findings from Saccharomyces cerevisiae, the data indicate that subunits C and H are essential for generation of a functional enzyme. Unlike S. cerevisiae, N. crassa has a single isoform of the a subunit. Analysis of other fungal genomes indicates that only the budding yeasts have a two-gene family for subunit a. It has been unclear whether subunit c', a small proteolipid, is a component of all V-ATPases. Our data suggest that this subunit is present in all fungi, but not in other organisms. Mutation or deletion of the N. crassa gene encoding subunit c' did not completely eliminate V-ATPase function. Unlike other V-ATPase null strains, they grew, although slowly, at alkaline pH, were able to form conidia (asexual spores), and were inhibited by concanamycin, a specific inhibitor of the V-ATPase. The phenotypic character in which strains differed was the ability to go through the sexual cycle to generate mature spores and viable mutant progeny. Strains lacking the integral membrane subunits a, c, c', and c' had more severe defects than strains lacking subunits C or H.  相似文献   

7.
Satoh M  Koyama N 《Anaerobe》2005,11(1-2):115-121
The structural genes for A and B subunits of the V-type Na(+)-ATPase from a facultatively anaerobic alkaliphile (Amphibacillus sp.), strain M-12, were cloned and sequenced. Transformation of Escherichia coli with the genes overexpressed two proteins, which crossreacted with an antiserum against A and B subunits of the V-type Na(+)-ATPase from Enterococcus hirae. The deduced amino acid sequence (594 amino acids; Mr, 66,144) of A subunit of the M-12 enzyme exhibited 73%, 51%, 49% and 53% identities with those of V-type ATPases from E. hirae, Thermus thermophilus, Neurospora crassa and Drosophila melanogaster, respectively. The amino acid sequence (458 amino acids; Mr, 51,308) of B subunit of the M-12 enzyme was 74%, 53%, 52% and 54% identical with those of the ATPases from E. hirae, T. thermophilus, N. crassa and D. melanogaster, respectively. The fact indicates that the amino acid sequences of A and B subunits of the M-12 enzyme exhibit significantly higher homologies with those of the E. hirae Na(+)-ATPase as compared with those of the H(+)-ATPases from T. thermophilus, N. crassa and D. melanogaster.  相似文献   

8.
The V-ATPases are a family of ATP-dependent proton pumps responsible foracidification of intracellular compartments in eukaryotic cells. This reviewfocuses on the the V-ATPases from clathrin-coated vesicles and yeastvacuoles. The V-ATPase of clathrin-coated vesicles is a precursor to thatfound in endosomes and synaptic vesicles, which function in receptorrecycling, intracellular membrane traffic, and neurotransmitter uptake. Theyeast vacuolar ATPase functions to acidify the central vacuole and to drivevarious coupled transport processes across the vacuolar membrane. TheV-ATPases are composed of two functional domains. The V1 domain isa 570-kDa peripheral complex composed of eight subunits of molecular weight70—14 kDa (subunits A—H) that is responsible for ATP hydrolysis.The V0 domain is a 260-kDa integral complex composed of fivesubunits of molecular weight 100—17 kDa (subunits a, d, c, c8 and c9)that is responsible for proton translocation. Using chemical modification andsite-directed mutagenesis, we have begun to identify residues that play arole in ATP hydrolysis and proton transport by the V-ATPases. A centralquestion in the V-ATPase field is the mechanism by which cells regulatevacuolar acidification. Several mechanisms are described that may play a rolein controlling vacuolar acidification in vivo. One mechanisminvolves disulfide bond formation between cysteine residues located at thecatalytic nucleotide binding site on the 70-kDa A subunit, leading toreversible inhibition of V-ATPase activity. Other mechanisms includereversible assembly and dissociation of V1 and V0domains, changes in coupling efficiency of proton transport and ATPhydrolysis, and regulation of the activity of intracellular chloride channelsrequired for vacuolar acidification.  相似文献   

9.
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.  相似文献   

10.
Zhang Z  Inoue T  Forgac M  Wilkens S 《FEBS letters》2006,580(8):2006-2010
Vacuolar ATPases (V1V0 -ATPases) function in proton translocation across lipid membranes of subcellular compartments. We have used antibody labeling and electron microscopy to define the position of subunit C in the vacuolar ATPase from yeast. The data show that subunit C is binding at the interface of the ATPase and proton channel, opposite from another stalk density previously identified as subunit H [Wilkens S., Inoue T., and Forgac M. (2004) Three-dimensional structure of the vacuolar ATPase - Localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942-41949]. A picture of the vacuolar ATPase stalk domain is emerging in which subunits C and H are positioned to play a role in reversible enzyme dissociation and activity silencing.  相似文献   

11.
The vacuolar ATPase of Neurospora crassa contains an F1-like structure   总被引:8,自引:0,他引:8  
We have explored the structure and subunit composition of the vacuolar ATPase of Neurospora crassa by investigating the effects of nitrate. Inhibition of enzyme activity by nitrate was correlated with dissociation of a complex of peripheral polypeptides from the integral membrane part of the enzyme. Surprisingly, this nitrate-induced release of subunits occurred only when nucleotides such as ADP, ATP, or ITP were present. ATPase inhibitors that have been proposed to act at the active site prevented release of subunits. Six polypeptides, 67, 57, 51, 48, 30, and 16 kDa, were coordinately released from the vacuolar membrane. When analyzed by size exclusion chromatography or by centrifugation through glycerol gradients, the six polypeptides behaved as an aggregate of about 440,000 kDa. We also examined vacuolar membranes by electron microscopy, using negative staining. We observed a high density of "ball and stalk" structures on the membranes, similar in size but different in shape from the F0F1-ATPase of mitochondrial membranes. Treatment with nitrate removed the ball and stalk structures from vacuolar membranes but had no visible effect on mitochondrial membranes. We concluded that the overall structure of the vacuolar ATPase is similar to that of F0F1-ATPases; however, the sizes of the component polypeptides and the factors that can cause dissociation are different.  相似文献   

12.
Biochemical characterization of the yeast vacuolar H(+)-ATPase   总被引:15,自引:0,他引:15  
The yeast vacuolar proton-translocating ATPase was isolated by two different methods. A previously reported purification of the enzyme (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095) was repeated. This procedure consisted of isolation of vacuoles, solubilization with the zwitterionic detergent ZW3-14, and glycerol gradient centrifugation of the solubilized vacuoles. The fraction with the highest specific activity (11 mumol of ATP hydrolyzed mg-1 min-1) included eight polypeptides of apparent molecular masses of 100, 69, 60, 42, 36, 32, 27, and 17 kDa, suggesting that the enzyme may be more complex than the three-subunit composition proposed from the original purification. The 69-kDa polypeptide was recognized by antisera against the catalytic subunits of two other vacuolar ATPases and labeled with the ATP analog 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, indicating that it contains all or part of the catalytic site. A monoclonal antibody was prepared against this subunit. Under nondenaturing conditions, the antibody immunoprecipitated eight polypeptides, of the same molecular masses as those seen in the glycerol gradient fraction, from solubilized vacuolar vesicles. All eight of these polypeptides are therefore good candidates for being genuine subunits of the enzyme. The structure and function of the yeast vacuolar H+-ATPase were further characterized by examining the inhibition of ATPase activity by KNO3. In the presence of 5 mM MgATP, 100 mM KNO3 inhibited 71% of the ATPase activity of vacuolar vesicles, and the 69- and 60-kDa subunits (and possibly the 42-kDa subunit) were removed from the vacuolar membrane to a similar extent. At concentrations of less than 200 mM KNO3, the stripping of the ATPase subunits and the inhibition of ATPase activity were dependent on the presence of MgATP, suggesting that this is a conformation-specific disassembly of the enzyme. The yeast vacuolar H+-ATPase is a multisubunit enzyme, consisting of a combination of peripheral and integral membrane subunits. Its structure and subunit composition are very similar to other vacuolar ATPase, and it shares some characteristics with the F1F0-ATPases.  相似文献   

13.
Previous purification and characterization of the yeast vacuolar proton-translocating ATPase (H(+)-ATPase) have indicated that it is a multisubunit complex consisting of both integral and peripheral membrane subunits (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095; Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989) J. Biol. Chem. 264, 19236-19244). We have obtained monoclonal antibodies recognizing the 42- and 100-kDa polypeptides that were co-purified with vacuolar ATPase activity. Using these antibodies we provide further evidence that the 42-kDa polypeptide, a peripheral membrane protein, and the 100-kDa polypeptide, an integral membrane protein, are genuine subunits of the yeast vacuolar H(+)-ATPase. The synthesis, assembly, and targeting of three of the peripheral subunits (the 69-, 60-, and 42-kDa subunits) and two of the integral membrane subunits (the 100- and 17-kDa subunits) were examined in mutant yeast cells containing chromosomal deletions in the TFP1, VAT2, or VMA3 genes, which encode the 69-, 60-, and 17-kDa subunits, respectively. The steady-state levels of the various subunits in whole cell lysates and purified vacuolar membranes were assessed by Western blotting, and the intracellular localization of the 60- and 100-kDa subunits was also examined by immunofluorescence microscopy. The results suggest that the assembly and/or the vacuolar targeting of the peripheral subunits of the yeast vacuolar H(+)-ATPase depend on the presence of all three of the 69-, 60-, and 17-kDa subunits. The 100-kDa subunit can be transported to the vacuole independently of the peripheral membrane subunits as long as the 17-kDa subunit is present; but in the absence of the 17-kDa subunit, the 100-kDa subunit appears to be both unstable and incompetent for transport to the vacuole.  相似文献   

14.
The vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain and an integral membrane domain connected by a central stalk and a few peripheral stalks. The number and arrangement of the peripheral stalk subunits remain controversial. The peripheral stalk of Na+-translocating V-ATPase from Enterococcus hirae is likely to be composed of NtpE and NtpF (corresponding to subunit G of eukaryotic V-ATPase) subunits together with the N-terminal hydrophilic domain of NtpI (corresponding to subunit a of eukaryotic V-ATPase). Here we purified NtpE, NtpF, and the N-terminal hydrophilic domain of NtpI (NtpI(Nterm)) as separate recombinant His-tagged proteins and examined interactions between these three subunits by pulldown assay using one tagged subunit, CD spectroscopy, surface plasmon resonance, and analytical ultracentrifugation. NtpI(Nterm) directly bound NtpF, but not NtpE. NtpE bound NtpF tightly. NtpI(Nterm) bound the NtpE-F complex stronger than NtpF only, suggesting that NtpE increases the binding affinity between NtpI(Nterm) and NtpF. Purified NtpE-F-I(Nterm) complex appeared to be monodisperse, and the molecular masses estimated from analytical ultracentrifugation and small-angle x-ray scattering (SAXS) indicated that the ternary complex is formed with a 1:1:1 stoichiometry. A low resolution structure model of the complex produced from the SAXS data showed an elongated "L" shape.  相似文献   

15.
Changes in the primary and quarternary structure of vacuolar and archaeal type ATPases that accompany the prokaryote-to-eukaryote transition are analyzed. The gene encoding the vacuolar-type proteolipid of the V-ATPase from Giardia lamblia is reported. Giardia has a typical vacuolar ATPase as observed from the common motifs shared between its proteolipid subunit and other eukaryotic vacuolar ATPases, suggesting that the former enzyme works as a hydrolase in this primitive eukaryote. The phylogenetic analyses of the V-ATPase catalytic subunit and the front and back halves of the proteolipid subunit placed Giardia as the deepest branch within the eukaryotes. Our phylogenetic analysis indicated that at least two independent duplication and fusion events gave rise to the larger proteolipid type found in eukaryotes and in Methanococcus. The spatial distribution of the conserved residues among the vacuolar-type proteolipids suggest a zipper-type interaction among the transmembrane helices and surrounding subunits of the V-ATPase complex. Important residues involved in the function of the F-ATP synthase proteolipid have been replaced during evolution in the V-proteolipid, but in some cases retained in the archaeal A-ATPase. Their possible implication in the evolution of V/F/A-ATPases is discussed. Received: 27 August 1997 / Accepted: 14 January 1998  相似文献   

16.
Proton pumping ATPases are found in all groups of present day organisms. The F-ATPases of eubacteria, mitochondria and chloroplasts also function as ATP synthases, i.e., they catalyze the final step that transforms the energy available from reduction/oxidation reactions (e.g., in photosynthesis) into ATP, the usual energy currency of modern cells. The primary structure of these ATPases/ATP synthases was found to be much more conserved between different groups of bacteria than other parts of the photosynthetic machinery, e.g., reaction center proteins and redox carrier complexes.These F-ATPases and the vacuolar type ATPase, which is found on many of the endomembranes of eukaryotic cells, were shown to be homologous to each other; i.e., these two groups of ATPases evolved from the same enzyme present in the common ancestor. (The term eubacteria is used here to denote the phylogenetic group containing all bacteria except the archaebacteria.) Sequences obtained for the plasmamembrane ATPase of various archaebacteria revealed that this ATPase is much more similar to the eukaryotic than to the eubacterial counterpart. The eukaryotic cell of higher organisms evolved from a symbiosis between eubacteria (that evolved into mitochondria and chloroplasts) and a host organism. Using the vacuolar type ATPase as a molecular marker for the cytoplasmic component of the eukaryotic cell reveals that this host organism was a close relative of the archaebacteria.A unique feature of the evolution of the ATPases is the presence of a non-catalytic subunit that is paralogous to the catalytic subunit, i.e., the two types of subunits evolved from a common ancestral gene. Since the gene duplication that gave rise to these two types of subunits had already occurred in the last common ancestor of all living organisms, this non-catalytic subunit can be used to root the tree of life by means of an outgroup; that is, the location of the last common ancestor of the major domains of living organisms (archaebacteria, eubacteria and eukaryotes) can be located in the tree of life without assuming constant or equal rates of change in the different branches.A correlation between structure and function of ATPases has been established for present day organisms. Implications resulting from this correlation for biochemical pathways, especially photosynthesis, that were operative in the last common ancestor and preceding life forms are discussed.  相似文献   

17.
The head piece of the A-type ATP synthase in an extremely halophilic archaebacterium, namely Halobacterium salinarium (halobium), is composed of two kinds of subunit, alpha and beta, and is associated with ATP-hydrolyzing activity. The genes encoding these subunits with hydrolytic activity have been cloned and sequenced. The putative amino acid sequences of the alpha and beta subunits deduced from the nucleotide sequences of the genomic DNA consist of 585 and 471 residues, respectively. The amino acid sequence of the alpha subunit of the halobacterial ATPase is 63 and 49% identical to the alpha subunits of ATPases from two other archaebacteria, Methanosarcina barkeri and Sulfolobus acidocaldarius, respectively. The sequence of the beta subunit is 66 and 55% identical to the beta subunits from these respective organisms. The homology between the alpha and beta subunits is around 30%. In contrast, the sequences of the halobacterial ATPase is less than 30% identical to F1 ATPase when any combination of subunits is considered. However, they are greater than 50% identical to a eukaryotic vacuolar ATPase when alpha and a, beta and b combinations are considered. These data fully confirm the first demonstration of this kind of relationship which was achieved by immunoblotting with an antibody raised against the halobacterial ATPase. We concluded that the archaebacterial ATP synthase is an A-type and not an F-type ATPase. This classification is also demonstrated by a "rooted" phylogenetic tree where halobacteria locate close to other archaebacteria and eukaryotes and distant from eubacteria.  相似文献   

18.
The 76-kDa NtpI subunit constitutes the membrane-embedded V(0) moiety of Enterococcus hirae vacuolar type Na+-ATPase with a 16-kDa NtpK hexamer containing Na+ binding sites. In this study, we investigated the role of an arginine residue, which is highly conserved among the corresponding subunits of bacterial vacuolar-type ATPases, at position 573 of NtpI. Substitution of Glu, Leu, or Gln for Arg-573 abolished sodium transport and sodium-stimulated ATP hydrolysis of the enzyme. The conservative replacement of Arg by Lys lowered both activities about one-fifth of those of the wild type enzyme. We have reported previously on ATP-dependent negative cooperativity for Na+ coupling of this enzyme (Murata, T., Kakinuma, Y., and Yamato, I. (2001) J. Biol. Chem. 276, 48337-48340). The negative cooperativity for the Na+ dependence of ATPase activity was weakened by the mutation R573K; the Hill coefficients for the wild type and mutant enzymes at a saturated ATP concentration were 0.22 +/- 0.03 and 0.40 +/- 0.05, respectively. The Hill coefficients of both enzymes at limited ATP concentrations approached 1. These results indicate that NtpI Arg-573 is indispensable for sodium translocation and for the cooperative features of E. hirae vacuolar-type ATPase.  相似文献   

19.
The macrolactone archazolid is a novel, highly specific V-ATPase inhibitor with an IC(50) value in the low nanomolar range. The binding site of archazolid is presumed to overlap with the binding site of the established plecomacrolide V-ATPase inhibitors bafilomycin and concanamycin in subunit c of the membrane-integral V(O) complex. Using a semi-synthetic derivative of archazolid for photoaffinity labeling of the V(1)V(O) holoenzyme we confirmed binding of archazolid to the V(O) subunit c. For the plecomacrolide binding site a model has been published based on mutagenesis studies of the c subunit of Neurospora crassa, revealing 11 amino acids that are part of the binding pocket at the interface of two adjacent c subunits (Bowman, B. J., McCall, M. E., Baertsch, R., and Bowman, E. J. (2006) J. Biol. Chem. 281, 31885-31893). To investigate the contribution of these amino acids to the binding of archazolid, we established in Saccharomyces cerevisiae mutations that in N. crassa had changed the IC(50) value for bafilomycin 10-fold or more and showed that out of the amino acids forming the plecomacrolide binding pocket only one amino acid (tyrosine 142) contributes to the binding of archazolid. Using a fluorescent derivative of N,N'-dicyclohexylcarbodiimide, we found that the binding site for archazolid comprises the essential glutamate within helix 4 of subunit c. In conclusion the archazolid binding site resides within the equatorial region of the V(O) rotor subunit c. This hypothesis was supported by an additional subset of mutations within helix 4 that revealed that leucine 144 plays a role in archazolid binding.  相似文献   

20.
Vacuolar proton-translocating ATPase pumps consist of two domains, V(1) and V(o). Subunit d is a component of V(o) located in a central stalk that rotates during catalysis. By generating mutations, we showed that subunit d couples ATP hydrolysis and proton transport. The mutation F94A strongly uncoupled the enzyme, preventing proton transport but not ATPase activity. C-terminal mutations changed coupling as well; ATPase activity was decreased by 59-72%, whereas proton transport was not measurable (E328A) or was moderately reduced (E317A and C329A). Except for W325A, which had low levels of V(1)V(o), mutations allowed wild-type assembly regardless of the fact that subunits E and d were reduced at the membrane. N- and C-terminal deletions of various lengths were inhibitory and gradually destabilized subunit d, limiting V(1)V(o) formation. Both N and C terminus were required for V(o) assembly. The N-terminal truncation 2-19Delta prevented V(1)V(o) formation, although subunit d was available. The C terminus was required for retention of subunits E and d at the membrane. In addition, the C terminus of its bacterial homolog (subunit C from T. thermophilus) stabilized the yeast subunit d mutant 310-345Delta and allowed assembly of the rotor structure with subunits A and B. Structural features conserved between bacterial and eukaryotic subunit d and the significance of domain 3 for vacuolar proton-translocating ATPase function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号