首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We have identified a synthetic peptide derived from the secreted portion of HSV type 2 glycoprotein G, denoted gG-2p20, which has proinflammatory properties in vitro. The gG-2p20 peptide, corresponding to aa 190-205 of glycoprotein G-2, was a chemoattractant for both monocytes and neutrophils in a dose-dependent fashion, and also induced the release of reactive oxygen from these cells. The receptor mediating the responses was identified as the formyl peptide receptor. The gG-2p20-induced activation of phagocytes had a profound impact on NK cell functions. The reactive oxygen species produced by gG-2p20-activated phagocytes both inhibited NK cell cytotoxicity and accelerated the apoptotic cell death in NK cell-enriched lymphocyte populations. Hence, we have for the first time been able to identify a potential function of the secreted portion of HSV-2 glycoprotein G. We propose that the proinflammatory gG-2p20 peptide identified could contribute to a reduced function and viability of NK cells during HSV-2 infection due to its ability to recruit and activate phagocytic cells.  相似文献   

2.
The gG-2 glycoprotein gene of herpes simplex virus type 2 (HSV-2) was cloned into the mammalian expression vector pMSG under the control of the inducible mouse mammary tumor virus promoter. Transfection of this cloned gG-2 construct into NIH 3T3 cells resulted in the stable expression of gG-2 upon induction with dexamethasone. In addition, the 104,000-molecular-weight (104K) and 72K gG-2 precursors as well as the 34K secreted component were generated in the transformed cells. The synthesis of gG-2 in these transformed cells appeared to follow the same cleavage-processing pathway as gG-2 synthesis during an HSV-2 infection. These results indicate that the processing of gG-2 can occur in the absence of an HSV-2 infection.  相似文献   

3.
We have recently identified a peptide derived from the secreted portion of the HSV-2 glycoprotein G, gG-2p20, to be proinflammatory. Based on its ability to activate neutrophils and monocytes via the formyl peptide receptor (FPR) to produce reactive oxygen species (ROS) that down-regulate NK cell function, we suggested it to be of importance in HSV-2 pathogenesis. We now describe the effects of an overlapping peptide, gG-2p19, derived from the same HSV-2 protein. Also, this peptide activated the ROS-generating NADPH-oxidase, however, only in monocytes and not in neutrophils. Surprisingly, gG-2p19 did not induce a chemotactic response in the affected monocytes despite using a pertussis toxin-sensitive, supposedly G-protein-coupled receptor. The specificity for monocytes suggested that FPR and its homologue FPR like-1 (FPRL1) did not function as receptors for gG-2p19, and this was also experimentally confirmed. Surprisingly, the monocyte-specific FPR homologue FPRL2 was not involved either, and the responsible receptor thus remains unknown so far. However, the receptor shares some basic signaling properties with FPRL1 in that the gG-2p19-induced response was inhibited by PBP10, a peptide that has earlier been shown to selectively inhibit FPRL1-triggered responses. We conclude that secretion and subsequent degradation of the HSV-2 glycoprotein G can generate several peptides that activate phagocytes through different receptors, and with different cellular specificities, to generate ROS with immunomodulatory properties.  相似文献   

4.
Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.  相似文献   

5.
The gene (US4) coding for herpes simplex virus type 2 (HSV-2) glycoprotein G (gG-2) was cloned and constitutively expressed in Chinese hamster ovary (CHO) cells. The expression vector containing the dihydrofolate reductase (dhfr) gene, and the HSV-2 US4 gene under the control of the Simian virus 40 early promoter (SV40 EP), was transfected into dhfr-deficient CHO cells. The transfected cells were selected and amplified using methotrexate (MTX). To demonstrate that the gG-2 produced in these transformed cells had antigenic determinants in common with the native glycoprotein, CHO cells expressing gG-2 were used in an immunofluorescent assay (IFA) for the detection of HSV-2 type-specific antibodies in human serum samples. Seven of eight serum samples from adults with prior episodes of culture proven HSV-2 infections were found to be positive by the IFA method whereas none of seven serum samples from young children with culture documented HSV-1 infections were positive by IFA. Thus the recombinant CHO : gG-2 cells have diagnostic utility in an HSV-2 specific serologic assay.  相似文献   

6.
Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK). Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acv(r) clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcv(r) mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants.  相似文献   

7.
The herpes simplex virus type 1 (HSV-1) glycoprotein B (gB-1) gene, deleted of 639 nucleotides that encode the transmembrane anchor sequence and reconstructed with the extramembrane and intracytoplasmic domains, was cloned under control of the Rous sarcoma virus long terminal repeat in the episomal replicating vector pRP-RSV, which contains the origin of replication and early region of the human papovavirus BK as well as a cDNA for a mutant mouse dihydrofolate reductase that is resistant to methotrexate. gB-1 (0.15 to 0.25 pg per cell per 24 h) was constitutively secreted into the culture medium of pRP-RSV-gBs-transformed human 293 cells. Treatment of transformed cells with methotrexate at high concentrations (0.6 to 6 microM) increased gB-1 production 10- to 100-fold, because of an amplification of the episomal recombinant. Mice immunized with secreted gB-1 produced HSV-1- and HSV-2-neutralizing antibodies and were protected against HSV-1 lethal, latent, and recurrent infections. Constitutive expression of secreted gB-1 in human cells may establish a system to develop diagnostic material and a subunit vaccine for HSV infections.  相似文献   

8.
The CP-1 antigen of herpes simplex virus type 1 (HSV-1) is a glycoprotein found in the soluble portion of infected cells, in detergent extracts of infected cell membranes, and in the envelope of purified virus. Antisera were prepared against a further purified form of CP-1 prepared from HSV soluble antigen mix; a glycoprotein, gp52, isolated from detergent-treated infected cells; and detergent extracts of purified virus. Each of the antisera reacted with CP-1 to give a single immunoprecipitin band of identity, and each antiserum neutralized the infectivity of HSV-1 and HSV-2. Our results suggested that the type-common determinants involved in the stimulation of neutralizing antibody resided on a 52,000-molecular-weight (52K) glycoprotein. The envelope of HSV contains several glycoproteins: one component at 59K and a complex of two or three components at 130K, none of which corresponds in molecular weight to gp52. Using the antisera as immunological probes, we performed pulse-chase experiments with [(35)S]methionine-labeled HSV-1-infected cells and followed the disposition of the glycoproteins during the infectious cycle. Each antiserum immunoprecipitated a (35)S-labeled 52K protein from lysates of cells pulse-labeled at 5 h after infection. By 10 h, the label was chased into a 59K protein also precipitable by each of the three antisera. The results suggest that gp52 is a precursor of gp59 and that the latter corresponds in molecular weight to one of the major glycoproteins of the virion envelope.  相似文献   

9.
In the majority of cases, the mechanism underlying the resistance to acyclovir (ACV) of herpes simplex viruses (HSVs) is thymidine kinase (TK) deficiency. Plaque isolates from eight ACV-resistant (ACVr) clinical isolates from AIDS patients, of which five reactivated, were sequenced to determine the genetic lesion within the tk gene conferring resistance and whether this may have correlated with reactivation potential. Mutations were clustered within two homopolymer nucleotide stretches. Three plaque isolates (1737-14, 90-150-3, and 89-650-5) had insertion mutations within a stretch of 7 guanosines, while two isolates (89-063-1 and 89-353-1) had frameshift mutations within a stretch of 6 cytosines (a deletion and an insertion, respectively). Mutations resulted in premature termination codons, and the predicted 28- and 32-kDa truncated TK products were detected by Western blot analysis of virus-infected cell extracts. The repair of one homopolymer frameshift mutation (in isolate 1737-14) restored TK activity, demonstrating that this mutation is the basis of TK deficiency. Of the five reactivated isolates, four were TK deficient and contained frameshift mutations while the fifth retained TK activity because of its altered-TK or Pol- phenotype. These data demonstrate that the majority of ACVr clinical isolates contain frameshift mutations within two long homopolymer nucleotide stretches which function as hot spots within the HSV tk gene and produce nonfunctional, truncated TK proteins.  相似文献   

10.
Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen which establishes lifelong infections. In the present study, we determined the sequence diversity of the complete genes coding for glycoproteins G (gG), I (gI), and E (gE), comprising 2.3% of the HSV-1 genome and located within the unique short (US) region, for 28 clinical HSV-1 isolates inducing oral lesions, genital lesions, or encephalitis. Laboratory strains F and KOS321 were sequenced in parallel. Phylogenetic analysis, including analysis of laboratory strain 17 (GenBank), revealed that the sequences were separated into three genetic groups. The identification of different genogroups facilitated the detection of recombinant viruses by using specific nucleotide substitutions as recombination markers. Seven of the isolates and strain 17 displayed sequences consistent with intergenic recombination, and at least four isolates were intragenic recombinants. The observed frequency of recombination based on an analysis of a short stretch of the US region suggests that most full-length HSV-1 genomes consist of a mosaic of segments from different genetic groups. Polymorphic tandem repeat regions, consisting of two to eight blocks of 21 nucleotides in the gI gene and seven to eight repeats of 3 nucleotides in the gG gene, were also detected. Laboratory strain KOS321 displayed a frameshift mutation in the gI gene with a subsequent alteration of the deduced intracellular portion of the protein. The presence of polymorphic tandem repeat regions and the different genogroup identities can be used for molecular epidemiology studies and for further detection of recombination in the HSV-1 genome.  相似文献   

11.
Studies of the size, composition, and structure of the deoxyribonucleic acid (DNA) of the F and G prototypes of herpes simplex virus (HSV) subtypes 1 and 2 (HSV-1 and HSV-2) showed the following. (i) As previously reported by Good-heart et al. HSV-1 and HSV-2 DNA have a buoyant density of 1.726 and 1.728 g/cm(3), corresponding to 67 and 69 guanine +/- cytosine moles per cent, respectively. The difference in guanine plus cytosine content of the DNA species was confirmed by the finding of a 1 C difference in T(m). (ii) The DNA from purified virus on cocentrifugation with T4 DNA in neutral sucrose density gradients sedimented at 55S, corresponding to 99 +/- 5 million daltons in molecular weight. HSV-1 and HSV-2 DNA could not be differentiated with respect to size. (iii) Cosedimentation of alkali-denatured DNA from purified virus with T4 DNA on alkaline sucrose density gradients consistently yielded several bands of single-stranded HSV DNA ranging from fragments 7 x 10(6) daltons to intact strands 48 x 10(6) daltons in molecular weight.  相似文献   

12.
Variants of herpes simplex virus type 2 (HSV-2) generated by virus passage in GMK-AH1 cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to PI-88 in their initial infection of cells and/or their cell-to-cell spread. The major alteration detected in all variants resistant to PI-88 in the initial infection of cells was a frameshift mutation(s) in the glycoprotein G (gG) gene that resulted in the lack of protein expression. Molecular transfer of the altered gG gene into the wild-type background confirmed that the gG-deficient recombinants were resistant to PI-88. In addition to PI-88, all gG-deficient variants of HSV-2 were resistant to the sulfated polysaccharide heparin. The gG-deficient virions were capable of attaching to cells, and this activity was relatively resistant to PI-88. In addition to having a drug-resistant phenotype, the gG-deficient variants were inefficiently released from infected cells. Purified gG bound to heparin and showed the cell-binding activity which was inhibited by PI-88. Many PI-88 variants produced syncytia in cultured cells and contained alterations in gB, including the syncytium-inducing L792P amino acid substitution. Although this phenotype can enhance the lateral spread of HSV in cells, it conferred no virus resistance to PI-88. Some PI-88 variants also contained occasional alterations in gC, gD, gE, gK, and UL24. In conclusion, we found that glycoprotein gG, a mucin-like component of the HSV-2 envelope, was targeted by sulfated oligo- and polysaccharides. This is a novel finding that suggests the involvement of HSV-2 gG in interactions with sulfated polysaccharides, including cell surface glycosaminoglycans.  相似文献   

13.
14.
构建单纯疱疹病毒2型包膜糖蛋白D成熟肽基因毕赤酵母表达载体,并对序列进行分析,为进行高抗原性的真核表达重组gD蛋白奠定基础。采用PCR扩增HSV2-gD成熟肽基因,将该段基因克隆于pGEM-T克隆载体,转化鉴定后,与巴斯德毕赤酵母表达载体(pPIC9K)酶切连接,转化大肠杆菌DH5α,筛选测序确定构建了pPIC9K?gD的真核表达载体,对克隆的序列进行分析,预测表达产物的理化特性及抗原性。结果显示,获得的重组的酵母表达载体pPIC9K-gD,测序结果证实为HSV2-gD成熟肽基因,序列分析其高度保守,预测蛋白分子量40.63kD,等电点pI为7.15,包含完整成熟肽分值达1.7的多个抗原决定簇。成功构建了HSV2-gD成熟肽基因的毕赤酵母表达载体。  相似文献   

15.
Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption.  相似文献   

16.
We performed affinity chromatography and immunoprecipitation experiments to determine whether cells infected with herpes simplex virus type 2 (HSV-2) expressed a glycoprotein that was functionally and antigenically related to the HSV-1 Fc-binding glycoprotein designated gE. We found that a protein from extracts of HSV-2-infected HEp-2 cells bound specifically to an Fc affinity column and that the electrophoretic mobility of this protein in sodium dodecyl sulfate-acrylamide gels was slightly less than the mobility of HSV-1 gE. Immunoprecipitation experiments performed with an antiserum prepared against HSV-1 gE revealed that (i) extracts from HSV-2-infected cells contained a glycoprotein that was antigenically related to HSV-1 gE; (ii) the electrophoretic mobility of the HSV-2 gE was indistinguishable from the mobility of the HSV-2 Fc-binding protein; (iii) the antiserum reacted with both newly synthesized transient forms and stable fully processed forms of both HSV-1 gE and HSV-2 gE; and (iv) the transient and stable forms of HSV-2 gE all had lower electrophoretic mobilities than their HSV-1 counterparts. Electrophoretic analyses of gE precipitated from extracts of HEp-2 cells infected with two sets of HSV-1 x HSV-2 intertypic recombinant viruses suggested that the gene for gE is located at the right end of the HSV genome (0.85 to 0.97 map units) in the unique portion of the S component.  相似文献   

17.
The sites on glycoprotein gC of herpes simplex virus type 1 (HSV-1) which bind complement component C3b were evaluated by using anti-gC monoclonal antibodies and mutants which have alterations at defined regions of the glycoprotein. Monoclonal antibodies were incubated with HSV-1-infected cells in a competitive assay to block C3b binding. Each of 12 different monoclonals, which recognize the four major antigenic sites of gC, completely inhibited C3b binding. With this approach, no one antigenic group on gC could be assigned as the C3b-binding region. Next, 21 gC mutants were evaluated for C3b binding, including 1 which failed to synthesize gC, 4 which synthesized truncated forms of the glycoprotein such that gC did not insert into the cell's membrane, and 16 which expressed gC on the cell's surface but which had mutations in various antigenic groups. Eleven strains did not bind C3b. This included the 1 strain which did not synthesize gC, the 4 strains which secreted gC without inserting the glycoprotein into the cell membrane, and 6 of 16 strains which expressed gC on the cell surface. In these six strains, the mutations were at three different antigenic sites. One hypothesis to explain these findings is that C3b binding is modified by changes in the conformation of gC which develop either after antibodies bind to gC or as a result of mutations in the gC gene. Attachment of C3b to gC was also evaluated in 31 low-passage clinical isolates of HSV-1. Binding was detected with each HSV-1 isolate, but not with nine HSV-2 isolates. Therefore, although mutants that lack C3b binding are readily selected in vitro, the C3b-binding function of gC is maintained in vivo. These results indicate that the sites on gC that bind C3b are different from those that bind monoclonal antibodies, that antibodies directed against all sites on gC block C3b binding, and that C3b binding is a conserved function of gC in vivo.  相似文献   

18.
Vero cells were biochemically transformed with the gene encoding ICP4 of herpes simplex virus type 2 (HSV-2). These cells were used as permissive hosts to isolate and propagate HSV-2 mutants defective in this gene. Two mutants, designated hr259 and hr79, were isolated. Neither mutant grew in nontransformed Vero cells, but both grew to near wild-type levels in HSV-2 ICP4-expressing cells. hr259 contains a deletion of about 0.6 kilobases which eliminates the mRNA start site of the ICP4 gene. hr79 contains a mutation which maps by marker rescue to the portion of the ICP4 gene encoding the carboxy-terminal half of the protein. Although hr259 failed to generate any detectable ICP4 mRNA in nontransformed Vero cells, hr79 encoded an ICP4 mRNA which is wild type with respect to size. In nontransformed Vero cells infected with hr259, only ICP0, ICP6, ICP22, and ICP27 were readily detectable. In the case of hr79, a truncated form of ICP4 appeared to be made in addition to ICP0, ICP6, ICP22, and ICP27. Both hr259 and hr79 grew efficiently on cell lines transformed with the ICP4 gene of HSV-1 as evidenced by plating efficiencies and single-burst experiments. Similarly, cells transformed with the ICP4 gene of HSV-2 served as efficient hosts for the growth of d120, HSV-1 ICP4 deletion mutant.  相似文献   

19.
Purified herpes simplex virus type 2 (HSV-2) virions were found to contain approximately the same number of polypeptides as HSV type 1 (HSV-1) virions. Comparisons of the structural proteins specified by five independent HSV-2 isolates revealed some minor differences in their electrophoretic profiles on sodium dodecyl sulfate-acrylamide gels; certain invariant features of the electrophoretic profiles, however, allowed clear differentiation between all the HSV-2 isolates and HSV-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号