首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes, which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG). Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38 MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair. Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on native collagen and 3DG-collagen.

Methodology/Principal Findings

Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and collagen expression through ERK1/2 and AKT downregulation via p38 MAPK.

Conclusions/Significance

Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays a significantly opposite role during times of cellular growth and cellular stress, which may account for the differing rates of wound closure seen in diabetic populations.  相似文献   

2.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

3.
《Cytokine》2015,71(2):97-103
Complex regulation of the wound healing process involves multiple interactions among stromal tissue cells, inflammatory cells, and the extracellular matrix. Low molecular weight hyaluronan (LMW HA) derived from the degradation of high molecular weight hyaluronan (HMW HA) is suggested to activate cells involved in wound healing through interaction with HA receptors. In particular, receptor CD44 is suggested to mediate cell response to HA of different MW, being the main cell surface HA receptor in stromal tissue and immune cells. However, the response of dermal fibroblasts, the key players in granulation tissue formation within the wound healing process, to LMW HA and their importance for the activation of immune cells is unclear. In this study we show that LMW HA (4.3 kDa) induced pro-inflammatory cytokine IL-6 and chemokines IL-8, CXCL1, CXCL2, CXCL6 and CCL8 gene expression in normal human dermal fibroblasts (NHDF) that was further confirmed by increased levels of IL-6 and IL-8 in cell culture supernatants. Conversely, NHDF treated by HMW HA revealed a tendency to decrease the gene expression of these cytokine and chemokines when compared to untreated control. The blockage of CD44 expression by siRNA resulted in the attenuation of IL-6 and chemokines expression in LMW HA treated NHDF suggesting the involvement of CD44 in LMW HA mediated NHDF activation. The importance of pro-inflammatory mediators produced by LMW HA triggered NHDF was evaluated by significant activation of blood leukocytes exhibited as increased production of IL-6 and TNF-α. Conclusively, we demonstrated a pro-inflammatory response of dermal fibroblasts to LMW HA that was transferred to leukocytes indicating the significance of LMW HA in the inflammatory process development during the wound healing process.  相似文献   

4.
BACKGROUND INFORMATION: Leeches respond to surgical lesions with the same sequence of events as that described for wound healing in vertebrates, where collagen is important for the development of tensions in healing wounds, functioning as an extracellular scaffold for accurate regeneration of the structures disrupted by surgical or traumatic actions. RESULTS: In surgically lesioned leeches, newly synthesized collagen is arranged in hierarchical structures. Fibrils can be packed and shaped to form cords or tubular structures, thus acting as an extracellular scaffold that directs and organizes the outgrowth of new vessels and the migration of immune cells towards lesioned tissues. In these animals, the general architecture of collagen fibrils, generated during tissue regeneration, shows similarities to both the structural pattern of collagen bundles and assembly processes observed in several vertebrate systems (fish scales, amphibian skin and human cornea). CONCLUSIONS: The production of extracellular matrix during wound healing in leeches is a surprising example of conservation of an extremely close relationship between the structure and function of molecular structures. It could be hypothesized that collagen structures, characterized not only by a striking structural complexity, but also by multifunctional purposes, are anatomical systems highly conserved throughout evolution.  相似文献   

5.
The biochemical regulation of collagen deposition during adult cutaneous wound repair is poorly understood. Likewise, how collagen is perceived and modulated in fetal scarless healing remains unknown. Recently, discoidin domain receptors-1 and 2 (DDR1 and DDR2) with tyrosine kinase activity have been identified as novel receptors for collagen. In light of these findings, it was speculated that the production of collagen receptors DDR1 and DDR2 by fetal fibroblasts may be temporally regulated to correlate with the ontogeny of embryonic scar formation. More specifically, because DDRs directly bind collagen and transmit the signals intracellularly, it was hypothesized that they may play an important role in fetal scarless healing by ultimately regulating and modulating collagen production and organization. As part of a fundamental assessment to elucidate the role of DDRs in scarless fetal wound repair, the endogenous expression of DDR1, DDR2, collagen I, and total collagen, as a function of fetal Sprague-Dawley rat skin fibroblasts of different gestational ages, representing scar-free (E16.5) periods was determined. Using explanted dermal fibroblasts of gestational days E13.5, E16.5, E18.5, and E21.5 (term gestation = 21.5 days) fetuses (n = 92), [3H]proline incorporation assay and Northern and Western blotting analysis were performed to compare the expressions of these molecules with scar-free and scar-forming stages of embryonic development. These results revealed a pattern of increasing collagen production with increasing gestational ages, whereas DDR1 expression decreased with increasing gestational age. This observation suggests that elevated levels of DDR1 may play an important role in scarless tissue regeneration by early gestation fetal fibroblasts. In contrast, DDR2 was expressed by fetal rat fibroblasts at a similar level throughout gestation. These data demonstrate for the first time the temporal expression of collagen and DDR tyrosine kinases in fetal rat fibroblasts as a function of gestational ages. Overall, these data suggest that differential temporal expression of the above-mentioned molecules during fetal skin development may play an important role in the ontogeny of scar formation. Future studies will involve the characterization of the biomolecular functions of these receptor kinases during fetal wound repair.  相似文献   

6.
ObjectivesHistatin 1(Hst 1) has been proved to promote wound healing. However, there was no specific study on the regulation made by Hst 1 of fibroblasts in the process of wound healing. This research comprehensively studied the regulation of Hst 1 on the function of fibroblasts in the process of wound healing and preliminary mechanism about it.Materials and methodsThe full‐thickness skin wound model was made on the back of C57/BL6 mice. The wound healing, collagen deposition and fibroblast distribution were detected on days 3, 5 and 7 after injury. Fibroblast was cultured in vitro and stimulated with Hst 1, and then, their biological characteristics and functions were detected.ResultsHistatin 1 can effectively promote wound healing, improve collagen deposition during and after healing and increase the number and function of fibroblasts. After healing, the mechanical properties of the skin also improved. In vitro, the migration ability of fibroblasts stimulated by Hst 1 was significantly improved, and the fibroblasts transformed more into myofibroblasts, which improved the function of contraction and collagen secretion. In fibroblasts, mTOR signalling pathway can be activated by Hst 1.ConclusionsHistatin 1 can accelerate wound healing and improve the mechanical properties of healed skin by promoting the function of fibroblasts. The intermolecular mechanisms need to be further studied, and this study provides a direction about mTOR signalling pathway.  相似文献   

7.
Light-and electron-microscopic autoradiography have been used to study fibroblast transformation into endothelial cells in the formation of new blood vessels during wound healing in rabbit ear chambers. When cultured fibroblasts labeled with tritium thymidine were transplanted autologously into the chambers, newly formed blood vessels contained endothelial cells labeled with tritium thymidine. This result suggests that fibroblasts play a pivotal role in angiogenesis, as progenitors of endothelial cells in newly formed blood vessels.  相似文献   

8.
Platelets actively participate in regulating thrombin production following physical or chemical injury to blood vessels. Injury to blood vessels initiates activation of the large numbers of platelets that appear in the subendothelium where they become exposed to tissue factor and to molecules adhesive for platelets and normally found in the extracellular matrix. The complex of plasma factor VIIa with extravascular tissue factor both initiates and localizes thrombin production on platelets and on extravascular cells. Thrombin production at these sites in turn enhances platelet activation and the subsequent hemostatic plug formation to minimize bleeding. Thrombin production and platelet activation also initiate the process of wound healing requiring thrombin-dependent cell activation and platelet-dependent formation of new blood vessels (angiogenesis). Activated platelets release from their storage granules several proteins and other factors that regulate local thrombin formation and the responses of blood vessel cells to injury to assure hemostasis and effective wound healing. Failure to localize and adequately regulate thrombin production and/or platelet activation can have pathological consequences, including the development and propagation of atherosclerosis and enhancement of tumor development. The primary basis for the pathological consequences of the failure to adequately regulate thrombin production is that the multi-functional thrombin activates several types of cells to initiate their mitogenesis. Mitogenesis precedes many of the undesirable consequences of poorly regulated thrombin production and platelet activation. In addition, activated platelets release a variety of products which influence the functions of several cell types to the extent that inadequate regulation of platelet activation (by excessive thrombin production) could contribute to the pathogenesis of acute and chronic arterial thrombosis and to tumor development. Activated platelets participate in tumor development by releasing several factors that positively (and negatively) regulate blood vessel formation.  相似文献   

9.
There is significant interest in the development of tissue-engineered skin analogues, which replace both the dermal and the epidermal layer, without the use of animal or human derived products such as collagen or de-epidermalised dermis. In this study, we proposed that alginate hydrogel could be used to encapsulate fibroblasts and that keratinocytes could be cultured on the surface to form a bilayered structure, which could be used to deliver the co-culture to a wound bed, initially providing wound closure and eventually expediting the healing process. Encapsulation of fibroblasts in 2 and 5% w/v alginate hydrogel effectively inhibited their proliferation, whilst maintaining cell viability allowing keratinocytes to grow uninhibited by fibroblast overgrowth to produce a stratified epidermal layer. It was shown that the alginate degradation process was not influenced by the presence of fibroblasts within the hydrogel and that lowering the alginate concentration from 5 to 2% w/v increased the rate of degradation. Fibroblasts released from the scaffold were able to secrete extracellular matrix (ECM) and thus should replace the degrading scaffold with normal ECM following application to the wound site. These findings demonstrate that alginate hydrogel may be an effective delivery vehicle and scaffold for the healing of full-thickness skin wounds.  相似文献   

10.
Heparin with its ability to dissolve the fibrin clot exerts its major effect in the early stages of wound healing by depriving the fibroblasts of their scaffold. Heparin inhibits cross linking of collagen and accelerates its degradation. There is faulty orientation of the collagen fibrils in the heparinized wound. It may be concluded that heparin interferes with wound healing.  相似文献   

11.
Abnormal wound healing with excessive scarring is a major health problem with socioeconomic and psychological impacts. In human, chronic wounds and scarring are associated with upregulation of the inducible nitric oxide synthase (iNOS). Recently, we have shown physiological regulation of iNOS in wound healing. Here, we sought to investigate the possible mechanistic role of iNOS in wound healing using biochemical and immunohistochemical assays. We found: (a) iNOS is the main source of wound nitric oxide (NO), (b) NOS inhibition in the wound, downregulated iNOS protein, mRNA and enzymatic activity, and reduced wound NO, and (c) iNOS inhibition resulted in delayed healing at early time points, and excessive scarring at late time points. Furthermore, molecular and cellular analysis of the wound showed that iNOS inhibition significantly (P < 0.05) increased TGF-β1 mRNA and protein levels, fibroblasts and collagen deposition. These latter findings suggest that iNOS might be exerting its action in the wound by signaling through TGF-β1 that activates wound fibroblasts to produce excessive collagen. Our current findings provide further support that iNOS is crucial for physiological wound healing, and suggest that dysregulation of iNOS during the inflammatory phase impairs healing, and results in disfiguring post-healing scarring. Thus, the mutual feedback regulation between iNOS and TGF-β1 at the gene, protein and functional levels might be the mechanism through which iNOS regulates the healing. Monitoring and maintenance of wound NO levels might be important for healing and avoiding long-term complications in susceptible people including patients with diabetic wounds, venous ulcers or keloid prone.  相似文献   

12.
13.
A model is presented outlining the molecular and cellular events that occur during the early stages of the wound healing process. The underlying theme is that there is a specific binding interaction between fibrin, the major clot protein, and hyaluronic acid (HA), a constituent of the wound extracellular matrix. This binding interaction, which could also be stabilized by other cross-linking components, provides the driving force to organize a three-dimensional HA matrix attached to and interdigitated with the initial fibrin matrix. The HA-fibrin matrix plays a major role in the subsequent tissue reconstruction processes. We suggest that HA and fibrin have both structural and regulatory functions at different times during the wound healing process. The concentration of HA in blood and in the initial clot is very low. This is consistent with the proposed interaction between HA and fibrin(ogen), which could interfere with either fibrinogen activation or fibrin assembly and cross-linking. We propose that an activator (e.g. derived from a plasma precursor, platelets or surrounding cells) is produced during the clotting reaction and then stimulates one or more blood cell types to synthesize and secrete HA into the fibrin matrix of the clot. We predict that HA controls the stability of the matrix by regulating the degradation of fibrin. The new HA-fibrin matrix increases or stabilizes the volume and porosity of the clot and then serves as a physical support, a scaffold through which cells trapped in the clot or cells infiltrating from the peripheral edge of the wound can migrate. The HA-fibrin matrix also actively stimulates or induces cell motility and activates and regulates many functions of blood cells, which are involved in the inflammatory response, including phagocytosis and chemotaxis. The secondary HA-fibrin matrix itself is then modified as cells continue to migrate into the wound, secreting hyaluronidase and plasminogen activator to degrade the HA and fibrin. At the same time these cells secrete collagen and glycosaminoglycans to make a more differentiated matrix. The degradation products derived from both fibrin and HA are, in turn, important regulatory molecules which control cellular functions involved in the inflammatory response and new blood vessel formation in the healing wound. The proposed model generates a number of testable experimental predictions.  相似文献   

14.
Exogenous glucocorticoids are known to inhibit wound repair, but the roles and mechanisms of action of endogenous glucocorticoids during the healing process are as yet unknown. Therefore, we wounded mice expressing a DNA-binding-defective mutant version of the glucocorticoid receptor (GRdim mice) and also analysed fibroblasts from these animals in vitro. We found a remarkably enlarged granulation tissue with a high fibroblast density in GRdim mice. This difference is likely to result from an increased migratory and proliferative capacity of GRdim fibroblasts and from elevated expression levels of soluble factors involved in granulation tissue formation in wounds of GRdim mice. In spite of the larger granulation tissue seen in early wounds, late wounds appeared normal, most likely due to an enhanced ability of GRdim fibroblasts to contract collagen. These results demonstrate an as yet unidentified role of endogenous glucocorticoids in the regulation of wound repair.  相似文献   

15.

Background

Hypertrophic scars are pathologic proliferations of the dermal skin layer resulting from excessive collagen deposition during the healing process of cutaneous wounds. Current research suggests that the TGF-β/Smad signaling pathway is closely associated with normal scar and hypertrophic scar formation. TRAP-1-like protein (TLP), a cytoplasmic protein, has been reported to efficiently regulate Smad2- and Smad3-dependent signal expression in the TGF-β pathway. The relationship between TLP and Type I/III collagen (Col I/III) synthesis explored in the present study provides an effective target for wound healing and gene therapy of hypertrophic scarring.

Objective

To investigate the effects of TLP on collagen synthesis in human dermal fibroblasts.

Methods

Lentiviral vectors encoding TLP was constructed to transfect fibroblasts derived from normal human skin. The expression of Col I/III and phosphorylation of Smad2 and Smad3 in fibroblasts were examined after TLP treatment. In addition, the comparison of TLP expression in normal skin tissues and in hypertrophic scar tissues was performed, and the effect of TLP on cell viability was analyzed by MTT assay.

Results

TLP expression in hypertrophic scar tissue was markedly higher than in normal skin tissue. The Real Time PCR and Western blot test results both revealed that the synthesis of Col I/III was positively correlated with the expression of TLP. TLP also facilitate Smad2 phosphorylation while, conversely, inhibiting Smad3 phosphorylation. TLP may play a cooperative role, along with the cytokine TGF-β1, in improving the overall cell viability of skin fibroblasts.

Conclusions

TLP likely acts as a molecular modulator capable of altering the balance of Smad3- and Smad2-dependent signaling through regulation of phosphorylation, thus facilitating collagen synthesis in fibroblasts. Based on genetic variation in TLP levels in different tissues, these results suggest that TLP plays a key role in the process of TGF-β1/Smad3 signaling that contributes to wound healing and genesis of pathologic scars.  相似文献   

16.
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.  相似文献   

17.
Extracellular matrix alters PDGF regulation of fibroblast integrins   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

18.

Background:

The multifunctional transforming growth factor beta (TGF-β) is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3) in human foreskin fibroblasts (HFF’s).

Methods:

We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA).

Results:

The highest TGF-β3 expression (8.3-fold greater than control) was obtained by lipofection after 72 hours using 3 µl of transfection reagent. Expression was 1.4-fold greater than control by electroporation.

Conclusions:

In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring.Key Words: Fibroblasts, Gene expression, TGF-β3  相似文献   

19.
皮肤是哺乳动物最重要的组织之一。当皮肤受损时,受损组织通过系列伤口愈合反应的生理和心理作用被修复,实现组织再生。再生反应主要发生在胚胎发育早期,伤口自愈能力随着机体的成熟而减弱;并且哺乳动物的组织重塑过程较为复杂,在不正确的信号引导下,可能引起并发症而导致创面愈合异常。研究表明,伤口微环境的稳态和信号分子的辅助作用是愈合的重要因素。Notch作为重要的信号通路,参与调控上皮巨噬细胞募集和血管内皮细胞再生等伤口愈合阶段。Wnt信号促进伤口表皮干细胞的增殖和血管网络结构的形成。Hedgehog信号驱动伤口处毛囊发育及其周围组织再生,TGF-β信号有助于愈合时多细胞层形成和瘢痕减少。本文重点阐述Notch信号通路以及Notch与相关信号分子互作在伤口愈合中的调控作用,旨在总结信号分子在组织工程研究方面的最新进展,分析伤口微环境的信号互作机制,为长时间伤口愈合和过度伤口愈合的治疗提供理论依据。  相似文献   

20.
Summary In the process of wound healing keratinocytes and fibroblasts play an important role, keratinocytes in the re-epithelization process and fibroblasts in the process of wound contraction. We have studied the role of human keratinocytes and fibroblasts in the rearrangement of collagen in a collagen lattice model system. Our results revealed that keratinocytes as well as fibroblasts rearrange the collagen lattice; this occurs in a cell number and collagen concentration dependent manner. The optimal gel contraction is obtained in the presence of keratinocytes on the top of and of fibroblasts in the collagen lattice, the situation most closely approaching the in vivo situation. Between the two types of cells, differences in morphologic behavior were observed: when incorporated into the gel the keratinocytes retained their spherical shape throughout the whole culture period, but fibroblasts became elongated and formed extensions. Our data suggest that not only fibroblasts but also keratinocytes may be involved in the process of wound contraction. This work was supported by the Koningin Wilhelmina Fonds (Netherlands Cancer Foundation, grant 84-10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号