首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodobacter sphaeroides f. sp. denitrificans biotin sulfoxide reductase (BSOR) catalyzes the reduction of d-biotin d-sulfoxide (BSO) to biotin, an important step in oxidized vitamin salvaging. In addition to BSO, the enzyme also catalyzes the reduction of a variety of other substrates, including methionine sulfoxide, with decreased efficiencies, suggesting a potential role as a general cell protector against oxidative damage. Recombinant BSOR, expressed as a glutathione S-transferase fusion protein, contains the molybdopterin guanine dinucleotide cofactor (MGD) as its sole prosthetic group, which is required for the reduction of BSO by either NADPH or reduced methyl viologen. Comparison of the amino acid sequences of BSOR and the closely related MGD-containing enzyme, dimethyl sulfoxide reductase, has indicated a number of conserved residues, including an active site serine residue, serine 121, which has been potentially identified as the fifth coordinating ligand of Mo in BSOR. Site-directed mutagenesis has been used to replace serine 121 with cysteine, threonine, or alanine residues in the BSOR sequence to asses the role of this residue in catalysis and/or Mo coordination. All three BSOR mutant proteins were expressed, purified to homogeneity, and demonstrated to contain both MGD by fluorescence spectroscopy and Mo by inductively coupled plasma mass spectrometry, similar to wild-type enzyme. However, all three mutant proteins were devoid of BSOR activity using either NADPH or reduced methyl viologen as the electron donor. These results strongly suggest that serine 121 in BSOR is essential for catalysis but is not essential for either Mo coordination or MGD binding.  相似文献   

2.
Dimethyl sulfoxide reductase (DMSOR), trimethylamine-N-oxide reductase (TMAOR), and biotin sulfoxide reductase (BSOR) are members of a class of bacterial oxotransferases that contain the bis(molybdopterin guanine dinucleotide)molybdenum cofactor. The presence of a Tyr residue in the active site of DMSOR and BSOR that is missing in TMAOR has been implicated in the inability of TMAOR, unlike DMSOR and BSOR, to utilize S-oxides. To test this hypothesis, Escherichia coli TMAOR was cloned and expressed at high levels, and site-directed mutagenesis was utilized to generate the Tyr-114 --> Ala and Phe variants of Rhodobacter sphaeroides DMSOR and insert a Tyr residue into the equivalent position in TMAOR. Although all of the mutants turn over in a manner similar to their respective wild-type enzymes, mutation of Tyr-114 in DMSOR results in a decreased specificity for S-oxides and an increased specificity for trimethylamine-N-oxide (Me(3)NO), with a greater change observed for DMSOR-Y114A. Insertion of a Tyr into TMAOR results in a decreased preference for Me(3)NO relative to dimethyl sulfoxide. Kinetic analysis and UV-visible absorption spectra indicate that the ability of DMSOR to be reduced by dimethyl sulfide is lost upon mutation of Tyr-114 and that TMAOR does not exhibit this activity even in the Tyr insertion mutant.  相似文献   

3.
Nelson KJ  Rajagopalan KV 《Biochemistry》2004,43(35):11226-11237
Rhodobacter sphaeroides biotin sulfoxide reductase (BSOR) contains the bis(molybdopterin guanine dinucleotide)molybdenum cofactor and catalyzes the reduction of D-biotin-D-sulfoxide to biotin. This protein is the only member of the dimethyl sulfoxide reductase family of molybdopterin enzymes that utilizes NADPH as the direct electron donor to the catalytic Mo center. Kinetic studies using stopped-flow spectrophotometry indicate that BSOR reduction by NADPH (>1000 s(-1)) is faster than steady-state turnover (440 s(-1)) and has shown that BSOR reduction occurs in concert with NADPH oxidation with no indication of a Mo(V) intermediate species. Because no crystallographic structure is currently available for BSOR, a protein structure was modeled using the structures for R. sphaeroides dimethyl sulfoxide reductase, Rhodobacter capsulatus dimethyl sulfoxide reductase, and Shewanella massilia trimethylamine N-oxide reductase as the templates. A potential NADPH-binding site was identified and tested by site-directed mutagenesis of residues within the area. Mutation of Arg137 or Asp136 reduced the ability of NADPH to serve as the electron donor to BSOR, indicating that the NADPH-binding site in BSOR is located in the active-site funnel of the putative structure where it can directly reduce the Mo center. Along with kinetic and spectroscopic data, the location of this binding site supports a direct hydride transfer mechanism for NADPH reduction of BSOR.  相似文献   

4.
Resonance Raman spectroscopy has been used to define active site structures for oxidized Mo(VI) and reduced Mo(IV) forms of recombinant Rhodobacter sphaeroides biotin sulfoxide reductase expressed in Escherichia coli. On the basis of (18)O/(16)O labeling studies involving water and the alternative substrate dimethyl sulfoxide and the close correspondence to the resonance Raman spectra previously reported for dimethyl sulfoxide reductase (Garton, S. D., Hilton, J., Oku, H., Crouse, B. R., Rajagopalan, K. V., and Johnson, M. K. (1997) J. Am. Chem. Soc. 119, 12906-12916), vibrational modes associated with a terminal oxo ligand and the two molybdopterin dithiolene ligands have been assigned. The results indicate that the enzyme cycles between mono-oxo-Mo(VI) and des-oxo-Mo(IV) forms with both molybdopterin dithiolene ligands remaining coordinated in both redox states. Direct evidence for an oxygen atom transfer mechanism is provided by (18)O/(16)O labeling studies, which show that the terminal oxo group at the molybdenum center is exchangeable with water during redox cycling and originates from the substrate in substrate-oxidized samples. Biotin sulfoxide reductase is not reduced by biotin or the nonphysiological products, dimethyl sulfide and trimethylamine. However, product-induced changes in the Mo=O stretching frequency provide direct evidence for a product-associated mono-oxo-Mo(VI) catalytic intermediate. The results indicate that biotin sulfoxide reductase is thermodynamically tuned to catalyze the reductase reaction, and a detailed catalytic mechanism is proposed.  相似文献   

5.
Conditions for heterologous expression of Rhodobacter sphaeroides biotin sulfoxide reductase in Escherichia coli were modified, resulting in a significant improvement in the yield of recombinant enzyme and enabling structural studies of the molybdenum center. Quantitation of the guanine and the molybdenum as compared to that found in R. sphaeroides DMSO reductase demonstrated the presence of the bis(MGD)molybdenum cofactor. UV-visible absorption spectra were obtained for the oxidized, NADPH-reduced, and dithionite-reduced enzyme. EPR spectra were obtained for the Mo(V) state of the enzyme. X-ray absorption spectroscopy at the molybdenum K-edge has been used to probe the molybdenum coordination of the enzyme. The molybdenum site of the oxidized protein possesses a Mo(VI) mono-oxo site (Mo=O at 1.70 A) with additional coordination by approximately four thiolate ligands at 2.41 A and probably one oxygen or nitrogen at 1.95 A. The NADPH- and dithionite-reduced Mo(IV) forms of the enzyme are des-oxo molybdenum sites with approximately four thiolates at 2.33 A and two different Mo-O/N ligands at 2.19 and 1.94 A.  相似文献   

6.
Bray RC  Adams B  Smith AT  Richards RL  Lowe DJ  Bailey S 《Biochemistry》2001,40(33):9810-9820
The bis-molybdopterin enzyme dimethylsulfoxide reductase (DMSOR) from Rhodobacter capsulatus catalyzes the conversion of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), reversibly, in the presence of suitable e(-)-donors or e(-)-acceptors. The catalytically significant intermediate formed by reaction of DMSOR with DMS ('the DMS species') and a damaged enzyme form derived by reaction of the latter with O(2) (DMS-modified enzyme, DMSOR(mod)D) have been investigated. Evidence is presented that Mo in the DMS species is not, as widely assumed, Mo(IV). Formation of the DMS species is reversed on removing DMS or by addition of an excess of DMSO. Equilibrium constants for the competing reactions of DMS and DMSO with the oxidized enzyme (K(d) = 0.07 +/- 0.01 and 21 +/- 5 mM, respectively) that control these processes indicate formation of the DMS species occurs at a redox potential that is 80 mV higher than that required, according to the literature, for reduction of Mo(VI) to Mo(IV) in the free enzyme. Specificity studies show that with dimethyl selenide, DMSOR yields a species analogous to the DMS species but with the 550 nm peak blue-shifted by 27 nm. It is concluded from published redox potential data that this band is due to metal-to-ligand charge transfer from Mo(V) to the chalcogenide. Since the DMS species gives no EPR signal in the normal or parallel mode, a free radical is presumed to be in close proximity to the metal, most likely on the S. The species is thus formulated as Mo(V)-O-S(*)Me(2). Existing X-ray crystallographic and Raman data are consistent with this structure. Furthermore, 1e(-) oxidation of the DMS species with phenazine ethosulfate yields a Mo(V) form without an -OH ligand, since its EPR signal shows no proton splittings. This form presumably arises via dissociation of DMSO. The structure of DMSOR(mod)D has been determined by X-ray crystallography. All four thiolate ligands and Ogamma of serine-147 remain coordinated to Mo, but there are no terminal oxygen ligands and Mo is Mo(VI). Thus, it is a dead-end species, neither oxo group acceptance nor e(-)-donation being possible. O(2)-dependent formation of DMSOR(mod)D represents noncatalytic breakdown of the DMS species by a pathway alternative to that in turnover, with oxidation to Mo(VI) presumably preceding product release. Steps in the forward and backward catalytic cycles are discussed in relation to earlier stopped-flow data. The finding that in the back-assay the Mo(IV) state may at least in part be by-passed via two successive 1e(-) reactions of the DMS species with the e(-)-acceptor, may have implications in relation to the existence of separate molybdopterin enzymes catalyzing DMSO reduction and DMS oxidation, respectively.  相似文献   

7.
The dimethylsulfoxide reductase (DMSOR) from Rhodobacter capsulatus is known to retain its three-dimensional structure and enzymatic activity upon substitution of molybdenum, the metal that occurs naturally at the active site, by tungsten. The redox properties of tungsten-substituted DMSOR (W-DMSOR) have been investigated by a dye-mediated reductive titration with the concentration of the W(V) state monitored by EPR spectroscopy. At pH 7.0, E(m)(W(VI)/W(V)) is -194 mV and E(m)(W(V)/W(IV)) is -134 mV. Each E(m) value of W-DMSOR is significantly lower (220 and 334 mV, respectively) than that of the corresponding couple of Mo-DMSOR. These redox potentials are consistent with the ability of Mo-DMSOR to catalyze both the reduction of DMSO to DMS and the back reaction, whereas W-DMSOR is very effective in catalyzing the forward reaction, but shows no ability to catalyze the oxidation of DMS to DMSO.  相似文献   

8.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

9.
The active site of sulfite oxidase has been investigated by X-ray absorption spectroscopy at the molybdenum K-edge at 4 K. We have investigated all three accessible molybdenum oxidation states, Mo(IV), Mo(V), and Mo(VI), allowing comparison with the Mo(V) electron paramagnetic resonance data for the first time. Quantitative analysis of the extended X-ray absorption fine structure indicates that the Mo(VI) oxidation state possesses two terminal oxo (Mo = O) and approximately three thiolate-like (Mo-S-) ligands and is unaffected by changes in pH and chloride concentration. The Mo(IV) and Mo(V) oxidation states, however, each have a single oxo ligand plus one Mo-O- (or Mo-N less than) bond, most probably Mo--OH, and two to three thiolate-like ligands. Both reduced forms appear to gain a single chloride ligand under conditions of low pH and high chloride concentration.  相似文献   

10.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

11.
The 1.82-Å X-ray crystal structure of the oxidised (Mo(VI)) form of the enzyme dimethylsulfoxide reductase (DMSOR) isolated from Rhodobacter capsulatus is presented. The structure has been determined by building a partial model into a multiple isomorphous replacement map and fitting the crystal structure of DMSOR from Rhodobacter sphaeroides to the partial model. The enzyme structure has been refined, at 1.82-Å resolution, to an R factor of 14.8% (R free?=?18.4%). The molybdenum is coordinated by seven ligands: four dithiolene sulfurs, Oγ of Ser147 and two oxo groups. The four sulfur ligands, at a metal-sulfur distance of 2.4?Å or 2.5?Å, are contributed by the two molybdopterin guanine dinucleotide (MGD) cofactors. The coordination sphere of the molybdenum is different from that in previously reported structures of DMSOR from R. sphaeroides and R. capsulatus. The 2.8-Å structure of DMSOR, reduced by addition of sodium dithionite, is also described and differs from the structure of the oxidised enzyme by the removal of a single oxo ligand from the molybdenum coordination sphere. A structure, at 2.5-Å resolution, has also been obtained from crystals soaked in mother liquor buffered at pH?7.0. No differences are observed in the structure at pH?7 when compared with the native crystal structure at pH?5.5.  相似文献   

12.
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSOR(mod)D, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with DMS(18)O or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSOR(mod)D form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.  相似文献   

13.
A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K(m) toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K(m) was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide:acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K(d) for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.  相似文献   

14.
All of the nine cysteine residues in dimethyl sulfoxide reductase(OMSOR) exist in reduced thiol form. The unfolded form, whichwas previously detected in DMSOR proteins secreted by spheroplastsprepared from a molybdenum cofactor-deficient mutant, was alsodetected in spheroplasts from a wild type strain when iodoacetamidewas present, suggesting that DMSOR is secreted first in a reducedand unfolded form. In spheroplasts from the mutant, a new foldingintermediate migrating between the unfolded and native formswas additionally detected on non-denaturing gel. This intermediatecontained no disulfide bonds, but had a folded compact conformationsimilar to that of the native form. (Received October 4, 1996; Accepted September 4, 1997)  相似文献   

15.
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120-122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (1)H(2)O and (2)H(2)O revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH(2), Mo(V)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307, 63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E degrees = +315 mV, pH 8).  相似文献   

16.
R Cammack  J H Weiner 《Biochemistry》1990,29(36):8410-8416
The electron transfer centers in dimethyl sulfoxide reductase were examined by EPR spectroscopy in membranes of the overproducing Escherichia coli strain HB101/pDMS159, and in purified enzyme. Iron-sulfur clusters of the [4Fe-4S] type and a molybdenum center were detected in the protein, which comprises three different subunits: DmsA, -B, and -C. The intensity of the reduced iron-sulfur clusters corresponded to 3.82 +/- 0.5 spins per molecule. The dithionite-reduced clusters were reoxidized by DMSO or TMAO. The enzyme, as prepared, showed a spectrum of Mo(V), which resembles the high-pH form of E. coli nitrate reductase. The Mo(V) detected by EPR was absent from a mutant which does not assemble the molybdenum cofactor. In these cases, the levels of EPR-detectable iron-sulfur clusters in the cells were increased. Extracts from HB101/pDMS159 enriched in DmsA showed more Mo(V) signals and considerably less iron-sulfur. These results are in agreement with predictions from amino acid sequence comparisons, that the molybdenum center is located in DmsA, while four iron-sulfur clusters are in DmsB. The midpoint potentials of the molybdenum and iron-sulfur clusters in the various preparations were determined by mediator titrations. The iron-sulfur signals could be best fitted by four clusters, with midpoint potentials spread between -50 and -330 mV. The midpoint potentials of the iron-sulfur clusters and Mo(V) species were pH dependent. In addition, all potentials became less negative in the presence of the detergent Triton X-100. Observation of relaxation enhancement of the Mo(V) species by the reduced [4Fe-4S] clusters indicated that the centers are in proximity within the protein.  相似文献   

17.
Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe–4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to −500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe–4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides have yielded new insight into its catalytic mechanism. A series of reductive titrations, performed over the pH range 6-10, reveal that the absorption spectrum of reduced enzyme is highly sensitive to pH. The reaction of reduced enzyme with dimethyl sulfoxide is found to be clearly biphasic throughout the pH range 6-8 with a fast, initial substrate-binding phase and substrate-concentration independent catalytic phase. The intermediate formed at the completion of the fast phase has the characteristic absorption spectrum of the established dimethyl sulfoxide-bound species. Quantitative reductive and oxidative titrations of the enzyme demonstrate that the molybdenum center takes up only two reducing equivalents, implying that the two pyranopterin equivalents of the molybdenum center are not formally redox active. Finally, the visible spectrum associated with the catalytically relevant "high-g split" Mo(V) species has been determined. Spectral deconvolution and EPR quantitation of enzyme-monitored turnover experiments with trimethylamine N-oxide as substrate reveal that no substrate-bound intermediate accumulates and that Mo(V) content remains near unity for the duration of the reaction. Similar experiments with dimethyl sulfoxide show that significant quantities of both the Mo(V) species and the dimethyl sulfoxide-bound complex accumulate during the course of reaction. Accumulation of the substrate-bound complex in the steady-state with dimethyl sulfoxide arises from partial reversal of the physiological reaction in which the accumulating product, dimethyl sulfide, reacts with oxidized enzyme to yield the substrate-bound intermediate, a process that significantly slows turnover.  相似文献   

19.
20.
Sulfite oxidase (SO) is a molybdoheme enzyme that is important in sulfur catabolism, and mutations in the active site region are known to cause SO deficiency disorder in humans. This investigation probes the effects that mutating aromatic residues (Y273, W338, and H337) in the molybdenum-containing domain of human SO have on both the intramolecular electron transfer (IET) rate between the molybdenum and iron centers using laser flash photolysis and on catalytic turnover via steady-state kinetic analysis. The W338 and H337 mutants show large decreases in their IET rate constants (k ET) relative to the wild-type values, suggesting the importance of these residues for rapid IET. In contrast, these mutants are catalytically competent and exhibit higher k cat values than their corresponding k ET, implying that these two processes involve different conformational states of the protein. Redox potential investigations using spectroelectrochemistry revealed that these aromatic residues close to the molybdenum center affect the potential of the presumably distant heme center in the resting state (as shown by the crystal structure of chicken SO), suggesting that the heme may be interacting with these residues during IET and/or catalytic turnover. These combined results suggest that in solution human SO may adopt different conformations for IET and for catalysis in the presence of the substrate. For IET the H337/W338 surface residues may serve as an alternative-docking site for the heme domain. The similarities between the mutant and wild-type EPR spectra indicate that the active site geometry around the Mo(V) center is not changed by the mutations studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号