首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the alterations in lipid peroxidation and antioxidant enzyme defences in the blood of patients with malignant breast tumour and benign breast disease. Forty patients with malignant breast tumour, 20 patients with benign breast disease and also 20 healthy control subjects were recruited for the study. Malondialdehyde levels in plasma and erythrocytes, and the activities of erythrocyte CuZn-superoxide dismutase, catalase, glutathione peroxidase and glucose-6-phosphate dehydrogenase were measured. Malondialdehyde levels were higher in patients with both benign breast disease and malignant breast tumour compared with control subjects. The activities of all antioxidant enzymes were higher in patients with malignant breast tumour, while only glutathione peroxidase and CuZn-superoxide dismutase activities were higher in patients with benign breast disease. Except for glucose-6-phosphate dehydrogenase, the antioxidant enzymes studied correlated positively with the malondialdehyde levels in patients with malignant breast tumour. On the other hand, only glucose-6-phosphate dehydrogenase activity was increased by the level of malignancy. The activity increases in erythrocyte antioxidant enzymes may be a compensatory upregulation in response to increased oxidative stress especially in patients with malignant breast tumour.  相似文献   

2.
In this study, we investigated the effect of astaxanthin (Ast) and aluminum (Al) on the erythrocyte glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activities in vivo and on G6PD enzyme in vitro in rats. For in vitro studies, G6PD enzyme was purified from rat erythrocyte by using 2′,5′‐ADP‐Sepharose 4B affinity gel. The effects of Ast and Al3+ ion were investigated on the purified enzyme. It was determined that Ast increased the enzyme activity, whereas Al3+ inhibited the enzyme activity noncompetitively (IC50 values; 0.679 mM, Ki values 1.32 mM). For in vivo studies, the rats were divided into the groups: control (Cont.), Al, Ast, and Al + Ast. The last three groups were compared with the control group. In Al group, a significant degree of inhibition was observed in the activity of G6PD and 6PGD enzymes when compared with the control group (P < 0.05), whereas there was an increase in the activities of G6PD and 6PGD enzymes in Ast and Al + Ast groups (P < 0.05).  相似文献   

3.
Catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activities, as well as malondialdehyde (MDA) and reduced glutathione (GSH) and oxidized glutathione (GSSG) contents, were determined during the growth of the unicellular marine alga Lingulodinium polyedrum (Stein) Dodge in batch‐cultures. CAT and APX activity peaks were detected at the beginning of algal exponential growth, although declining trends were subsequently identified in both enzymes, with a slight increase in CAT activity at the end of the experimental period. MDA content attained maximum values from day 0–3 and at the end of the experimental period (day 21), declining halfway from day 10–14. GSH and GSSG contents presented the highest values at the beginning of the growth curve, decreasing from day 3 onwards. Despite the depletion of the GSH pool, an upward trend was observed in the (GSH) (0.5 GSSG + GSH)?1 ratio, indicating that the L. polyedrum cells were able to maintain an increasing redox potential along exponential and linear growth phases in their efforts to prevent oxidative stress.  相似文献   

4.
5.
The freeze‐tolerant larvae of the goldenrod gall fly (Eurosta solidaginis) undergo substantial alterations to their molecular physiology during the winter including the production of elevated quantities of glycerol and sorbitol, which function as cryoprotectants to survive whole body freezing. Production of these cryoprotectants depends on cytosolic pools of nicotinamide adenine dinucleotide phosphate H (NADPH), a major source being the pentose phosphate pathway (PPP). Glucose‐6‐phosphate dehydrogenase (G6PDH) mediates the rate‐limiting and committed step of the PPP and therefore its molecular properties were explored in larvae sampled from control versus frozen states. G6PDH was purified from control (5°C) and frozen (?15°C) E. solidaginis larvae by a single‐step chromatography method utilizing 2′,5′‐ADP agarose and analyzed to determine its enzymatic parameters. Studies revealed a decrease in Km for G6P in the frozen animals (to 50% of control values) suggesting an increased flux through the PPP. Immunoblotting of the purified enzyme showed differences in the relative extent of several posttranslational modifications, notably ubiquitination (95% decrease in frozen larvae), cysteine nitrosylation (61% decrease), threonine (4.1 fold increase), and serine phosphorylation (59% decrease). Together these data suggested that the increased flux through the PPP needed to generate NADPH for cryoprotectants synthesis is regulated, at least in part, through posttranslational alterations of G6PDH.  相似文献   

6.
Bacteria grow on multicomponent substrates in most natural and engineered environments. To advance our ability to model bacterial growth on such substrates, axenic cultures were grown in chemostats at a low specific growth rate and a constant total energy flux on binary and ternary substrate mixtures and were assayed for key catabolic enzymes for each substrate. The substrates were benzoate, salicylate, and glucose, and the enzymes were catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and glucose-6-phosphate dehydrogenase, respectively. The binary mixtures were salicylate with benzoate and salicylate with glucose. Measurements were also made of oxygen uptake rate by whole cells in response to each substrate. The effects of the substrate mixture on the oxygen uptake rate paralleled the effects on the measured enzymes. Catechol 1,2-dioxygenase exhibited a threshold response before synthesis occurred. Below the threshold flux of benzoate through the chemostat, either basal enzyme levels or nonspecific enzymes kept reactor concentrations too low for enzyme synthesis. Above the threshold, enzyme levels were linearly related to the fraction of the total energy flux through the chemostat due to benzoate. Gentisate 1,2-dioxygenase exhibited a linear response to the salicylate flux when mixed with benzoate, but a threshold response when mixed with glucose. Glucose-6-phosphate dehydrogenase activity increased in direct proportion to the glucose flux through the chemostat over the entire range studied. The results from two ternary mixtures were consistent with those from the binary mixtures.  相似文献   

7.
The effect of dexamethasone on glucose and glutamine metabolism was investigated. The consumption and oxidation of glucose and glutamine, and the production of glutamate and lactate were determined in neutrophils cultured for 3 h in the presence of dexamethasone. The activities and expression of glucose-6-phosphate dehydrogenase (G6PDH) and phosphate-dependent glutaminase were also determined under the same conditions. Addition of dexamethasone to the culture medium caused a significant increase of glucose consumption at 0.5 microm (123.9%) and 1.0 microm (78.3%) concentrations. In spite of this, however, glucose oxidation remained unchanged. The glucocorticoid did not change glutamine consumption but caused a significant increase of glutamate production and did not alter glutamine oxidation. Dexamethasone-treated neutrophils had a significant decrease of G6PDH activity and expression in particular at 1.0 microm concentration. Phosphate- dependent glutaminase activity was also decreased (about 34%) by dexamethasone treatment. A similar effect was observed on glutaminase expression as indicated by RT-PCR analysis. Thus, the effect of dexamethasone on neutrophil metabolism was particularly noticeable with respect to G6PDH and glutaminase activities where a decrease in the respective mRNA levels was demonstrated.  相似文献   

8.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

9.
The objective of this study was to investigate oxidative DNA damage, and the levels of antioxidant enzymes (AOE) and selenium (Se) in relation to iodine deficiency and/or goiter in children. The study was performed in a group of goitrous high school children (15-18 years of age) ( n =14) with severe or moderate iodine deficiency. Thyroid hormones (TSH, FT 4 , TT 4 , FT 3 , TT 3 ), urinary iodine (UI) and plasma Se levels, and erythrocyte glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were determined and compared with those of a control group consisting of non-goitrous high school children ( n =14) with normal UI levels or mild iodine deficiency. In the goitrous group, concentrations of FT 4 , TT 4 , plasma Se and UI, and activities of GSHPx and SOD were found to be significantly lower. Six typical hydroxyl radical-induced base lesions in genomic DNA of peripheral blood were identified and quantified by gas chromatography/isotope-dilution mass spectrometry (GC/IDMS), and higher levels of DNA base lesions were observed in the goitrous group. The results suggest that highly iodine-deficient goitrous children may be under oxidative stress, which may lead to greater level of oxidative damage to DNA. This study supports the evidence for the reported relationship between iodine deficiency and the increased incidence of thyroid malignancies.  相似文献   

10.
Microalgae have long been considered as potential biological feedstock for the production of wide array of bioproducts, such as biofuel feedstock because of their lipid accumulating capability. However, lipid productivity of microalgae is still far below commercial viability. Here, a glucose‐6‐phosphate dehydrogenase from the oleaginous microalga Nannochloropsis oceanica is identified and heterologously expressed in the green microalga Chlorella pyrenoidosa to characterize its function in the pentose phosphate pathway. It is found that the G6PD enzyme activity toward NADPH production is increased by 2.19‐fold in engineered microalgal strains. Lipidomic analysis reveals up to 3.09‐fold increase of neutral lipid content in the engineered strains, and lipid yield is gradually increased throughout the cultivation phase and saturated at the stationary phase. Moreover, cellular physiological characteristics including photosynthesis and growth rate are not impaired. Collectively, these results reveal the pivotal role of glucose‐6‐phosphate dehydrogenase from N. oceanica in NADPH supply, demonstrating that provision of reducing power is crucial for microalgal lipogenesis and can be a potential target for metabolic engineering.  相似文献   

11.
Thyroid hormones are associated with the oxidative and antioxidative status of the organism. Since data on the oxidative status of hypothyroidism are limited and controversial, we investigated the oxidant and antioxidant status and serum paraoxonase/arylesterase activities in propylthiouracil-induced hypothyroidism and examined the effect of vitamin E supplementation on this experimental model. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + vitamin E; group 3, propylthiouracil; group 4, propylthiouracil + vitamin E). Plasma, red blood cell, liver, heart and skeletal muscle malondialdehyde levels were increased in the propylthiouracil-treated group compared with the control rats and were decreased in propylthiouracil + vitamin E group compared with the propylthiouracil-treated group. Vitamin E supplementation also significantly increased liver and kidney reduced glutathione levels in propylthiouracil treated animals. Serum paraoxonase and arylesterase activities were decreased in propylthiouracil treated group and vitamin E supplementation caused significant increase in serum paraoxonase activity compared with the propylthiouracil-treated rats. These findings suggest that hypothyroidism is accompanied with increased oxidative stress and vitamin E supplementation exerts beneficial effects on this situation.  相似文献   

12.
Qin JF  Chen HG  Cai WG  Yang T  Jia XP 《应用生态学报》2011,22(7):1878-1884
实验室条件下,研究了不同浓度邻苯二甲酸二丁酯(DBP)长期胁迫(15 d)对翡翠贻贝内脏团和外套膜抗氧化酶(超氧化物歧化酶SOD、过氧化氢酶CAT)及脂质过氧化(LPO)水平(以MDA含量表示)的影响,以及受胁迫翡翠贻贝在清洁海水中恢复阶段上述生化指标的变化特征.结果表明:胁迫阶段,0.5和2.5 mg.L-1DBP下翡翠贻贝内脏团SOD活性表现为先抑制后逐渐恢复,12.5和62.5 mg.L-1下则持续受到显著抑制;不同浓度组CAT活性均明显被抑制.LPO水平明显升高.外套膜中,2.5 mg.L-1下SOD活性受到持续诱导,其他浓度组则先被抑制,后随曝露时间延长逐渐被诱导;各浓度组CAT的变化波动较大,没有明显规律;而LPO水平明显升高.净化恢复阶段,12.5和62.5 mg.L-1DBP胁迫下的内脏团SOD和CAT活性恢复较慢,其LPO水平随时间延长逐渐恢复至对照组水平;外套膜中SOD活性呈持续升高趋势,CAT活性和LPO水平则随时间延长恢复到对照组水平.  相似文献   

13.
In this work to determine the effects of metals exposure of Oreochromis niloticus on erythrocyte antioxidant systems, fish were exposed to 5.0 mg/L Zn, 1.0 mg/L Cd, and 5.0 mg/L Zn + 1.0 mg/L Cd mixtures for 7 and 14 days and reduced glutathione (GSH) level, catalase (CAT), and glucose‐6‐phosphate dehydrogenase (G6PD) activities were investigated. In addition, Zn or Cd levels in whole blood were studied. Erythrocyte GSH level and CAT and G6PD enzyme activities increased in response to single and combined Zn and Cd exposure. The elevation observed in the CAT activity was higher in the Cd alone, and in combination with Zn, than in Zn alone. Time‐dependent alteration was not observed in all antioxidant parameters. Exposure to metals (alone and in mixture) resulted in elevatation of Zn and Cd levels in the blood. Concentration of metals in the blood of fish exposed to the Zn + Cd combination was lower than in fish exposed to the single metal. This study demonstrates that metals caused oxidative stress in fish erythrocytes, and an adaptation with an increase in CAT and G6PD activities and GSH level, which were important in the protection against metal damage, was observed. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:223–229, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20327  相似文献   

14.
This article describes a method for determining some antioxidant enzyme activities (catalase and/or glutathione peroxidase) and the oxidative status (protein oxidative damage and/or lipid peroxidation) of human blood. However, the main objective of the work is to illustrate the relationship between antioxidant defences and oxidative damage, showing to students their correlation and the general importance of the biochemical regulation in health and diseases.  相似文献   

15.
The effect of NaCl on antioxidant enzyme activities in potato seedlings   总被引:7,自引:0,他引:7  
The effect of NaCl on the growth and activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were investigated in the seedlings of four potato cultivars (Agria, Kennebec; relatively salt tolerant, Diamant and Ajax; relatively salt sensitive). The shoot fresh mass of Agria and Kennebec did not changed at 50 mM NaCl, whereas in Diamant and Ajax it decreased to 50 % of that in the controls. In Agria and Kennebec, SOD activity increased at 50 mM NaCl, but no significant changes observed in Diamant and Ajax. At higher NaCl concentration, SOD activity reduced in all cultivars. CAT and POD activities increased in all cultivars under salt stress. Unlike the other cultivars, in Ajax seedlings, APX activity increased in response to NaCl stress. We also observed new POD and SOD isoenzyme activities and changes in isoenzyme compositions under salt stress. These results suggest that salt-tolerant potato cultivars may have a better protection against reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes (especially SOD) under salt stress.  相似文献   

16.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

17.
Treatment with 50 microM CuSO4 for five days caused significant decrease in dry-matter production and protein level of ten-day-old sunflower seedling roots. An increase of lipoperoxidation product rate was also observed. The involvement of some enzyme activities in the sunflower root defence against Cu-induced oxidative stress was studied. Copper treatment induced several changes in antioxidant enzymes. SOD (superoxide dismutase, EC 1.15.1.1) activity was reduced but CAT (catalase, EC 1.11.1.6) and GPX (guaiacol peroxidase, EC 1.11.1.7) activities were significantly enhanced. The lignifying peroxidase activities, assayed using coniferyl alcohol and syringaldazine, were also stimulated. Analysis by native gel electrophoresis of syringaldazine peroxidase activity showed the stimulation of an isoform (A2) and the induction of another one (A1) under cupric stress conditions. On the other hand, the activity of PAL (phenylalanine ammonia lyase, EC 4.3.1.5), which plays an important role in plant defence, was also activated. The possible mechanisms by which Cu-induced growth delay and changes in enzymatic activities involved in plant defence processes are discussed.  相似文献   

18.
We demonstrate a highly parallel strategy to analyze the impact of single nucleotide mutations on protein function. Using our method, it is possible to screen a population and quickly identify a subset of functionally interesting mutants. Our method utilizes a combination of yeast functional complementation, growth competition of mutant pools, and polymerase colonies. A defined mutant human glucose-6-phosphate-dehydrogenase library was constructed which contains all possible single nucleotide missense mutations in the eight-residue glucose-6-phosphate binding peptide of the enzyme. Mutant human enzymes were expressed in a zwf1 (gene encoding yeast homologue) deletion strain of Saccharomyces cerevisiae. Growth rates of the 54 mutant strains arising from this library were measured in parallel in conditions selective for active hG6PD. Several residues were identified which tolerated no mutations (Asp200, His201 and Lys205) and two (Ile199 and Leu203) tolerated several substitutions. Arg198, Tyr202, and Gly204 tolerated only 1-2 specific substitutions. Generalizing from the positions of tolerated and non-tolerated amino acid substitutions, hypotheses were generated about the functional role of specific residues, which could, potentially, be tested using higher resolution/lower throughput methods.  相似文献   

19.
Glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) play an important function in various biochemical processes as they generate reducing power of the cell. Thus, metabolic reprogramming of reduced nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis is reported to be a vital step in cancer progression as well as in combinational therapeutic approaches. In this study, N‐benzoylindoles 9a‐ ‐ 9d , which form the main framework of many natural indole derivatives such as indomethacin and N‐benzoylindoylbarbituric acid, were synthesized through three easy and effective steps as an in vitro inhibitor effect of G6PD and 6PGD. The N‐benzoylindoles inhibited the enzymatic activity with IC50 in the range of 3.391505 μM for G6PD and 2.19–990 μM for 6PGD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号