首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular basis of pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in chickens remains largely unknown. H5N1 A/chicken/Yamaguchi/7/2004 virus (CkYM7) replicates rapidly in macrophages and vascular endothelial cells in chickens, causing sudden death without fever or gross lesions, while H5N1 A/duck/Yokohama/aq10/2003 virus (DkYK10) induces high fever, severe gross lesions, and a prolonged time to death, despite the 98% amino acid identity between the two viruses. To explore the molecular basis of this difference in pathogenicity, a series of eight single-gene reassortant viruses from these HPAI viruses were compared for pathogenicity in chickens. Two reassortants possessing the NP or PB2 gene from DkYK10 in the CkYM7 background reduced pathogenicity compared to other reassortants or CkYM7. Inversely, reassortants possessing the NP or PB2 gene of CkYM7 in the DkYK10 background (rgDkYK-PB2(Ck), rgDkYK-NP(Ck)) replicated quickly and reached higher titers than DkYK10, accompanied by more rapid and frequent apoptosis of macrophages. The rgDkYK-NP(Ck) and rgDkYK-PB2(Ck) reassortants also replicated more rapidly in chicken embryo fibroblasts (CEFs) than did rgDkYK10, but replication of these viruses was similar to that of CkYM7 and DkYK10 in duck embryo fibroblasts. A comparison of pathogenicities of seven rgDkYK10 mutants with a single amino acid substitution in NP(Dk) demonstrated that valine at position 105 in the NP(Ck) was responsible for the increased pathogenicity in chickens. NP(Ck), NP(105V), and PB2(Ck) enhanced the polymerase activity of DkYK10 in CEFs. These results indicate that both NP and PB2 contribute to the high pathogenicity of the H5N1 HPAI viruses in chickens, and valine at position 105 of NP may be one of the determinants for adaptation of avian influenza viruses from ducks to chickens.  相似文献   

2.
The virulence determinants for highly pathogenic avian influenza viruses (AIVs) are considered multigenic, although the best characterized virulence factor is the hemagglutinin (HA) cleavage site. The capability of influenza viruses to reassort gene segments is one potential way for new viruses to emerge with different virulence characteristics. To evaluate the role of other gene segments in virulence, we used reverse genetics to generate two H5N1 recombinant viruses with differing pathogenicity in chickens. Single-gene reassortants were used to determine which viral genes contribute to the altered virulence. Exchange of the PB1, PB2, and NP genes impacted replication of the reassortant viruses while also affecting the expression of specific host genes. Disruption of the parental virus' functional polymerase complexes by exchanging PB1 or PB2 genes decreased viral replication in tissues and consequently the pathogenicity of the viruses. In contrast, exchanging the NP gene greatly increased viral replication and expanded tissue tropism, thus resulting in decreased mean death times. Infection with the NP reassortant virus also resulted in the upregulation of gamma interferon and inducible nitric oxide synthase gene expression. In addition to the impact of PB1, PB2, and NP on viral replication, the HA, NS, and M genes also contributed to the pathogenesis of the reassortant viruses. While the pathogenesis of AIVs in chickens is clearly dependent on the interaction of multiple gene products, we have shown that single-gene reassortment events are sufficient to alter the virulence of AIVs in chickens.  相似文献   

3.

Background

Human infections with avian influenza viruses (AIVs) have frequently raised global concerns of emerging, interspecies-transmissible viruses with pandemic potential. Waterfowl, the predominant reservoir of influenza viruses in nature, harbor precursors of different genetic lineages that have contributed to novel pandemic influenza viruses in the past.

Methods

Two duck influenza H5N2 viruses, DV518 and DV413, isolated through virological surveillance at a live-poultry market in Taiwan, showed phylogenetic relatedness but exhibited different replication capabilities in mammalian Madin-Darby Canine Kidney (MDCK) cells. This study characterizes the replication properties of the two duck H5N2 viruses and the determinants involved.

Results

The DV518 virus replicated more efficiently than DV413 in both MDCK and chicken DF1 cells. Interestingly, the infection of MDCK cells by DV518 formed heterogeneous plaques with great differences in size [large (L) and small (S)], and the two viral strains (p518-L and p518-S) obtained from plaque purification exhibited distinguishable replication kinetics in MDCK cells. Nonetheless, both plaque-purified DV518 strains still maintained their growth advantages over the plaque-purified p413 strain. Moreover, three amino acid substitutions in PA (P224S), PB2 (E72D), and M1 (A128T) were identified in intra-duck variations (p518-L vs p518-S), whereas other changes in HA (N170D), NA (I56T), and NP (Y289H) were present in inter-duck variations (DV518 vs DV413). Both p518-L and p518-S strains had the N170D substitution in HA, which might be related to their greater binding to MDCK cells. Additionally, polymerase activity assays on 293T cells demonstrated the role of vRNP in modulating the replication capability of the duck p518-L viruses in mammalian cells.

Conclusion

These results demonstrate that intra-host phenotypic variation occurs even within an individual duck. In view of recent human infections by low pathogenic AIVs, this study suggests possible determinants involved in the stepwise selection of virus variants from the duck influenza virus population which may facilitate inter-species transmission.  相似文献   

4.
X Li  W Qi  J He  Z Ning  Y Hu  J Tian  P Jiao  C Xu  J Chen  J Richt  W Ma  M Liao 《PloS one》2012,7(6):e40118
H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs.  相似文献   

5.
Avian influenza viruses (AIVs) recognize sialic acid linked α2,3 to galactose (SAα2,3Gal) glycans as receptors. In this study, the interactions between hemagglutinins (HAs) of AIVs and sulfated SAα2,3Gal glycans were analyzed to clarify the molecular basis of interspecies transmission of AIVs from ducks to chickens. It was revealed that E190V and N192D substitutions of the HA increased the recovery of viruses derived from an H6 duck virus isolate, A/duck/Hong Kong/960/1980 (H6N2), in chickens. Recombinant HAs from an H6 chicken virus, A/chicken/Tainan/V156/1999 (H6N1), bound to sulfated SAα2,3Gal glycans, whereas the HAs from an H6 duck virus did not. Binding preference of mutant HAs revealed that an E190V substitution is critical for the recognition of sulfated SAα2,3Gal glycans. These results suggest that the binding of the HA from H6 AIVs to sulfated SAα2,3Gal glycans explains a part of mechanisms of interspecies transmission of AIVs from ducks to chickens.  相似文献   

6.
Seventeen recombinant viruses were generated by a reverse genetic technique to elucidate the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) in chickens. The recombinant viruses generated possessed hemagglutinin (HA) and neuraminidase (NA) genes from an HPAIV. Other segments were combinations of the genes from an HPAIV and two low-pathogenic avian influenza viruses (LPAIVs) derived from chicken (LP) and wild bird (WB). Exchange of whole internal genes from an HPAIV with those of an LPAIV resulted in a significant extension of the survival time following intranasal infection of the chickens with the recombinants. Survival analysis demonstrated that the exchange of a gene segment affected survivability of the chickens with statistical significance. The analysis revealed three groups of recombinants with various gene constellations that depended upon the survivability of the infected chickens. Recombinants where the PA gene was exchanged from LP to WB in the LP gene background, LP (W/PA), did not kill any chickens. LP (W/PA) replicated less efficiently both in vitro and in vivo, suggesting that the intrinsic replication ability of LP (W/PA) affects pathogenicity; however, such a correlation was not seen for the other recombinants. Microarray analysis of the infected chicken lungs indicated that the expression of 7 genes, CD274, RNF19B, OASL, ZC3HAV1 [corrected] , PLA2G6, GCH1, and USP18, correlated with the survivability of the chickens infected (P < 0.01). Further analysis of the functions of these genes in chickens would aid in the understanding of host gene responses following fatal infections by HPAIVs.  相似文献   

7.
Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV infections have been also reported in mammals, including humans. In both mammals and birds, the relationship between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy. Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive proliferation of HPAIV and causes fatal multiple organ failure in chickens.  相似文献   

8.
Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.  相似文献   

9.
Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.  相似文献   

10.
Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub‐groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub‐group; whereas wild bird isolates belonged to the other sub‐groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub‐groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub‐group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub‐group C) and A/duck/Chiba/26‐372‐48/2014 (Chiba2014; sub‐group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.  相似文献   

11.
Song J  Feng H  Xu J  Zhao D  Shi J  Li Y  Deng G  Jiang Y  Li X  Zhu P  Guan Y  Bu Z  Kawaoka Y  Chen H 《Journal of virology》2011,85(5):2180-2188
During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 10(5)-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks.  相似文献   

12.
Quail are thought to serve as intermediate hosts of influenza A viruses between aquatic birds and terrestrial birds, such as chickens, due to their high susceptibility to aquatic-bird viruses, which then adapt to replicate efficiently in their new hosts. However, does replication of aquatic-bird influenza viruses in quail similarly result in their efficient replication in humans? Using sialic acid-galactose linkage-specific lectins, we found both avian (sialic acid-α2-3-galactose [Siaα2-3Gal] linkages on sialyloligosaccharides)- and human (Siaα2-6Gal)-type receptors on the tracheal cells of quail, consistent with previous reports. We also passaged a duck H3N2 virus in quail 19 times. Sequence analysis revealed that eight mutations accumulated in hemagglutinin (HA) during these passages. Interestingly, many of the altered HA amino acids found in the adapted virus are present in human seasonal viruses, but not in duck viruses. We also found that stepwise stalk deletion of neuraminidase occurred during passages, resulting in reduced neuraminidase function. Despite some hemagglutinin mutations near the receptor binding pocket, appreciable changes in receptor specificity were not detected. However, reverse-genetics-generated viruses that possessed the hemagglutinin and neuraminidase of the quail-passaged virus replicated significantly better than the virus possessing the parent HA and neuraminidase in normal human bronchial epithelial cells, whereas no significant difference in replication between the two viruses was observed in duck cells. Further, the quail-passaged but not the original duck virus replicated in human bronchial epithelial cells. These data indicate that quail can serve as intermediate hosts for aquatic-bird influenza viruses to be transmitted to humans.  相似文献   

13.
Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and 'classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host-pathogen relationships for highly pathogenic and zoonotic avian influenza.  相似文献   

14.
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.  相似文献   

15.
Avian influenza viruses play a crucial role in the creation of human pandemic viruses. In this study, we have demonstrated that both human and avian influenza receptors exist in cells in the respiratory and intestinal tracts of chickens. We have also determined that primarily cultured chicken lung cells can support the replication of both avian and human influenza viruses.  相似文献   

16.
H9N2 avian influenza viruses (AIVs) circulate globally in poultry and have become the dominant AIV subtype in China in recent years. Previously, we demonstrated that the H9N2 virus (A/chicken/Eastern China/SDKD1/2015) naturally harbors a mammalian-adaptive molecular factor (627K) in the PB2 protein and is weakly pathogenic in mice. Here, we focused on new markers for virulence in mammals. A mouse-adapted H9N2 virus was serially passaged in mice by infecting their lungs. As expected, infected mice showed clinical symptoms and died at passage six. A comparison between the wild-type and mouse-adapted virus sequences identified amino acid substitutions in the hemagglutinin (HA) protein. H9N2 viruses with the T187P ?+ ?M227L double mutation exhibited an increased affinity to human-type (SAα2,6Gal) receptors and significantly enhanced viral attachment to mouse lung tissues, which contributed to enhancing viral replication and virulence in mice. Additionally, HA with the T187P ?+ ?M227L mutation enabled H9N2 viral transmission in guinea pigs via direct contact. AIV pathogenicity in mice is a polygenic trait. Our results demonstrated that these HA mutations might be combined with PB2-627K to significantly increase H9N2 virulence in mice, and this enhanced virulence was achieved in other H9N2 AIVs by generating the same combination of mutations. In summary, our study identified novel key elements in the HA protein that are required for H9N2 pathogenicity in mice and provided valuable insights into pandemic preparedness against emerging H9N2 strains.  相似文献   

17.
Chinese and Global Distribution of H9 Subtype Avian Influenza Viruses   总被引:1,自引:0,他引:1  
H9 subtype avian influenza viruses (AIVs) are of significance in poultry and public health, but epidemiological studies about the viruses are scarce. In this study, phylogenetic relationships of the viruses were analyzed based on 1233 previously reported sequences and 745 novel sequences of the viral hemagglutinin gene. The novel sequences were obtained through large-scale surveys conducted in 2008-2011 in China. The results revealed distinct distributions of H9 subtype AIVs in different hosts, sites and regions in China and in the world: (1) the dominant lineage of H9 subtype AIVs in China in recent years is lineage h9.4.2.5 represented by A/chicken/Guangxi/55/2005; (2) the newly emerging lineage h9.4.2.6, represented by A/chicken/Guangdong/FZH/2011, has also become prevalent in China; (3) lineages h9.3.3, h9.4.1 and h9.4.2, represented by A/duck/Hokkaido/26/99, A/quail/Hong Kong/G1/97 and A/chicken/Hong Kong/G9/97, respectively, have become globally dominant in recent years; (4) lineages h9.4.1 and h9.4.2 are likely of more risk to public health than others; (5) different lineages have different transmission features and host tropisms. This study also provided novel experimental data which indicated that the Leu-234 (H9 numbering) motif in the viral hemagglutinin gene is an important but not unique determinant in receptor-binding preference. This report provides a detailed and updated panoramic view of the epidemiological distributions of H9 subtype AIVs globally and in China, and sheds new insights for the prevention of infection in poultry and preparedness for a potential pandemic caused by the viruses.  相似文献   

18.
Li Z  Jiang Y  Jiao P  Wang A  Zhao F  Tian G  Wang X  Yu K  Bu Z  Chen H 《Journal of virology》2006,80(22):11115-11123
In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.  相似文献   

19.
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.  相似文献   

20.
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号