首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2Apro). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET‐based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP2) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real‐time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2Apro catalytic activity, irrespective of other viral‐encoded protease, the activated caspases or general inhibition of protein synthesis in the EV‐infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease–substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus‐induced host translation inhibition. Biotechnol. Bioeng. 2009; 104: 1142–1152. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.  相似文献   

4.
The precise regulation of epidermal growth factor receptor (EGFR) signaling is crucial to its function in cellular growth control. Various studies have suggested that the C-terminal phosphorylation domain, itself a substrate for the EGFR kinase activity, exerts a regulatory influence upon it, although the molecular mechanism for this regulation is unknown. The fluorescence resonance energy transfer (FRET) technique was employed to examine how C-terminal domain conformational changes in the context of receptor activation and autophosphorylation might regulate EGFR enzymatic activity. A novel FRET reporter system was devised in which recombinant purified EGFR intracellular domain (ICD) proteins of varying C-terminal lengths were site-specifically labeled at their extreme C termini with blue fluorescent protein (BFP) and a fluorescent nucleotide analog, 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), binding at their active sites. This novel BFP/TNP-ATP FRET pair demonstrated efficient energy transfer as evidenced by appreciable BFP-donor quenching by bound TNP-ATP. In particular, a marked reduction in energy transfer was observed for the full-length BFP-labeled EGFR-ICD protein upon phosphorylation, likely reflecting its movement away from the active site. The estimated distances from the BFP module to the TNP-ATP-occupied active site for the full-length and C-terminally truncated proteins also reveal the possible folding geometry of this domain with respect to the kinase core. The present studies demonstrate the first use of BFP/TNP-ATP as a FRET reporter system. Furthermore, the results described here provide biophysical evidence for phosphorylation-dependent conformational changes in the C-terminal phosphorylation domain and its likely interaction with the kinase core.  相似文献   

5.
We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed.  相似文献   

6.
In multiple myeloma (MM), malignant plasma cells produce large amounts of antibodies and have highly active protein translational machinery. It is not known whether regulation of the abundance and aminoacylation (charging) of transfer RNA (tRNA) takes place in myeloma cells to accommodate for the increased amount of protein translation. Using tRNA-specific microarrays, we demonstrate that tRNA levels are significantly elevated in MM cell lines compared to normal bone marrow cells. We furthermore show that the addition of the proteasome inhibitor, bortezomib (Velcade™, PS-341) results in decreased charging levels of tRNAs, in particular those coding for hydrophobic amino acids. These results suggest that tRNA properties are altered in MM to accommodate for its increased need for protein translation, and that proteasome inhibition directly impacts protein synthesis in MM through effects on tRNA charging.  相似文献   

7.
8.
9.
The development of a dual receptor detection method for enhanced biosensor monitoring was investigated by analyzing potential fluorescent resonance energy transfer (FRET) pairs. The dual receptor scheme requires the integration of a chemical transducer system with two unique protein receptors that bind to a single biological agent. The two receptors are tagged with special molecular groups (donors and acceptors fluorophores) while the chemical transduction system relies on the well-known mechanisms of FRET. During the binding event, the two FRET labeled receptors dock at the binding sites on the surface of the biological agent. The resulting close proximity of the two fluorophores upon binding will initiate the energy transfer resulting in fluorescence. The paper focuses on the analysis and optimization of the chemical transduction system. A variety of FRET fluorophore pairs were tested in a spectrofluorimeter and promising FRET pairs were then tagged to the protein, avidin and its ligand, biotin. Due to their affinities, the FRET-tagged biomolecules combine in solution, resulting in a stable, fluorescent signal from the acceptor FRET dye with a simultaneous decrease in fluorescent signal from the donor FRET dye. The results indicate that the selected FRET pairs can be utilized in the development of dual receptor sensors.  相似文献   

10.
A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium is biologically active through the functions of selenoproteins that contain the amino acid selenocysteine. This amino acid is translated in response to in-frame UGA codons in mRNAs that include a SECIS element in its 3' untranslated region, and this process requires a unique tRNA, referred to as tRNA([Ser]Sec). The translation of UGA as selenocysteine, rather than its use as a termination signal, is a candidate restriction point for the regulation of selenoprotein synthesis by selenium. A specialized reporter construct was used that permits the evaluation of SECIS-directed UGA translation to examine mechanisms of the regulation of selenoprotein translation. Using SECIS elements from five different selenoprotein mRNAs, UGA translation was quantified in response to selenium supplementation and alterations in tRNA([Ser]Sec) levels and isoform distributions. Although each of the evaluated SECIS elements exhibited differences in their baseline activities, each was stimulated to a similar extent by increased selenium or tRNA([Ser]Sec) levels and was inhibited by diminished levels of the methylated isoform of tRNA([Ser]Sec) achieved using a dominant-negative acting mutant tRNA([Ser]Sec). tRNA([Ser]Sec) was found to be limiting for UGA translation under conditions of high selenoprotein mRNA in both a transient reporter assay and in cells with elevated GPx-1 mRNA. This and data indicating increased amounts of the methylated isoform of tRNA([Ser]Sec) during selenoprotein translation indicate that it is this isoform that is translationally active and that selenium-induced tRNA methylation is a mechanism of regulation of the synthesis of selenoproteins.  相似文献   

11.
12.
细胞的生长和功能发挥需要特定的内部条件。当外界条件发生变化时,细胞要想保持这种特定的内部环境,需要许多过程的参与,其中最重要的一个部分是RNA代谢调节,其通常涉及一般翻译水平的下降和应激反应,以有利基因翻译的增加。tRNA是翻译机制的一个基本组成部分,在蛋白质合成过程中,它将氨基酸传递给核糖体。tRNA的显著特征之一是高度修饰,这些修饰有大量用途,包括确保翻译的准确性和高效性、维持tRNA折叠或稳定性等。细胞在逆境胁迫条件下,tRNA修饰水平会发生显著变化,并通过不同的途径影响细胞的翻译。本文阐述了tRNA核苷修饰与细胞胁迫之间的相互关系,描述了tRNA修饰响应胁迫应答的可能机制。  相似文献   

13.
14.
The membrane topology of the colicin E1 channel domain was studied by fluorescence resonance energy transfer (FRET). The FRET involved a genetically encoded fluorescent amino acid (coumarin) as the donor and a selectively labeled cysteine residue tethered with DABMI (4-(dimethylamino)phenylazophenyl-4'-maleimide) as the FRET acceptor. The fluorescent coumarin residue was incorporated into the protein via an orthogonal tRNA/aminoacyl-tRNA synthetase pair that allowed selective incorporation into any site within the colicin channel domain. Each variant harbored a stop (TAG) mutation for coumarin incorporation and a cysteine (TGT) mutation for DABMI attachment. Six interhelical distances within helices 1-6 were determined using FRET analysis for both the soluble and membrane-bound states. The FRET data showed large changes in the interhelical distances among helices 3-6 upon membrane association providing new insight into the membrane-bound structure of the channel domain. In general, the coumarin-DABMI FRET interhelical efficiencies decreased upon membrane binding, building upon the umbrella model for the colicin channel. A tentative model for the closed state of the channel domain was developed based on current and previously published FRET data. The model suggests circular arrangement of helices 1-7 in a clockwise direction from the extracellular side and membrane interfacial association of helices 1, 6, 7, and 10 around the central transmembrane hairpin formed by helices 8 and 9.  相似文献   

15.
Aminoacyl-tRNA synthetases (ARSs) are critical components of protein translation, providing ribosomes with aminoacyl-tRNAs. In return, ribosomes release uncharged tRNAs as ARS substrates. Here, we show that tRNA deacylation can be uncoupled from protein synthesis in an amino acid specific manner. While tRNAs coupled to radiolabeled Met, Leu Lys, or Ser are stable in cells following translation inhibition with arsenite, radiolabeled Cys is released from tRNA at a high rate. We discuss possible translation independent functions for tRNA(Cys).  相似文献   

16.
The tRNA dependent cell--free protein--synthesizing system from rabbit differentiated mammary gland has been obtained. The level of protein synthesis including caseins was found to be much higher in the presence of homologous tRNA in comparison with tRNAs from non-differentiated mammary gland, liver, brewer's yeast. The efficiency of translation was shown to depend on the tRNA pool quantitative balance. The addition of tRNA to mammary gland explants causes stimulation of casein synthesis. The level of this stimulation depends on both the origin of tRNA and physiological state of the gland. It is concluded that the functional adaptation of tRNA is a regulatory link in specific protein biosynthesis at the translation level.  相似文献   

17.
Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently close proximity. The use of time-resolved (TR) FRET minimizes the autofluorescence of molecules present in biological samples. In this report, we describe a homogenous immunoassay prototype utilizing TR-FRET for detection of antibodies in solution. The assay is based on labeled protein L, a bacterial protein that binds to immunoglobulin (Ig) light chain, and labeled antigen, which upon association with the same Ig molecule produce a TR-FRET active complex. We show that the approach is functional and can be utilized for both mono- and polyvalent antigens. We also compare the assay performance to that of another homogenous TR-FRET immunoassay reported earlier. This novel assay may have wide utility in infectious disease point-of-care diagnostics.  相似文献   

18.
19.
Macromolecular transport between the nucleus and cytoplasm occurs through the nuclear pore complexes (NPCs). The NPC in the budding yeast Saccharomyces cerevisiae is a 60-MDa structure embedded in the nuclear envelope and composed of ~30 proteins, termed nucleoporins or nups. Here we present a large-scale analysis of spatial relationships between nucleoporins using fluorescence resonance energy transfer (FRET) in living yeast cells. Energy transfer was measured in a panel of strains, each of which coexpresses the enhanced cyan and yellow fluorescent proteins as fusions to distinct nucleoporins. With this approach, we have determined 13 nucleoporin pairs yielding FRET signals. Independent experiments are consistent with the FRET results: Nup120 localization is perturbed in the nic96-1 mutant, as is Nup82 localization in the nup116Delta mutant. To better understand the spatial relationship represented by an in vivo FRET signal, we have investigated the requirements of these signals. We demonstrate that in one case FRET signal is lost upon insertion of a short spacer between the nucleoporin and its enhanced yellow fluorescent protein label. We also show that the Nup120 FRET signals depend on whether the fluorescent moiety is fused to the N- or C-terminus of Nup120. Combined with existing data on NPC structure, the FRET pairs identified in this study allow us to propose a refined molecular model of the NPC. We suggest that the approach may serve as a prototype for the in situ study of other large macromolecular complexes.  相似文献   

20.
Adenovirus simultaneously inhibits cap-dependent host cell mRNA translation while promoting the translation of its late viral mRNAs during infection. Studies previously demonstrated that tyrosine kinase activity plays a central role in the control of late adenovirus protein synthesis. The tyrosine kinase inhibitor genistein decreases late viral mRNA translation and prevents viral inhibition of cellular protein synthesis. Adenovirus protein 100k blocks cellular mRNA translation by disrupting the cap-initiation complex and promotes viral mRNA translation through an alternate mechanism known as ribosome shunting. 100k protein interaction with initiation factor eIF4G and the viral 5' noncoding region on viral late mRNAs, known as the tripartite leader, are both essential for ribosome shunting. We show that adenovirus protein 100k promotes ribosome shunting in a tyrosine phosphorylation-dependent manner. The primary sites of phosphorylated tyrosine on protein 100k were mapped and mutated, and two key sites are shown to be essential for protein 100k to promote ribosome shunting. Mutation of the two tyrosine phosphorylation sites in 100k protein does not impair interaction with initiation factor 4G, but it severely reduces association of 100k with tripartite leader mRNAs. 100k protein therefore promotes ribosome shunting and selective translation of viral mRNAs by binding specifically to the adenovirus tripartite leader in a phosphotyrosine-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号