首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dual siRNA against different regions of gene in hepatitis C virus (HCV) synergistically inhibited replication of HCV RNA. An HCV-infected cell model was established, and HCV RNA and core protein were detected by RT-PCR and Western blot, respectively. Four HCV-specific siRNAs (siCore, siNS3, siNS4B, siNS5B) were designed and transfected into HCV-infected Huh7.5.1 cells. The antiviral efficacies of the siRNAs were compared using real time PCR and agarose gel electrophoresis. HCV replication in infected cells was inhibited by IFNα-2b in a dose-dependent manner. Synergistic inhibition effects were achieved with combination treatment of any two of the siRNAs (siCore, siNS3 and siNS5B) at low doses (0.1 and 10 nM), as compared to single siRNA treatment (P < 0.05). Furthermore, CCK-8 assay showed no toxicity of the siRNAs to Huh7.5.1 cells. These findings indicate a promising new therapeutic approach for treatment of HCV.  相似文献   

3.
Retinal neovascularization (NV) occurs in various ocular disorders including proliferative diabetic retinopathy, retinopathy of prematurity and secondary neovascular glaucoma, which often result in blindness. Vascular endothelial growth factor (VEGF) is an essential growth factor for angiogenesis, and is particularly regulated by hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions. Therefore, HIF-1alpha and VEGF could provide targets for therapeutic intervention on retinal NV. In this study, we investigated the inhibitory effects of small interfering RNA (siRNA) targeting HIF-1alpha and VEGF on the expression of HIF-1alpha and VEGF in human umbilical vein endothelial cells (HUVEC) in vitro and on retinal NV in vivo. siRNA-expressing plasmids targeting human HIF-1alpha (HIF-1alpha siRNA) and human VEGF(165) (VEGF siRNA) were constructed. They were transfected and co-transfected to HUVEC and C57BL/6J mice of ischemic retinopathy model. HIF-1alpha siRNA and VEGF siRNA specifically downregulated HIF-1alpha and VEGF at both mRNA and protein levels in vitro and in vivo. Neovascular tufts and neovascular nuclei were decreased in gene therapy group compared to control hypoxia group. Co-transfection of HIF-1alpha siRNA and VEGF siRNA resulted in maximal effects on VEGF suppression in vitro and in vivo. It also manifested the maximal inhibitory effect on retinal NV. These results indicate that the application of HIF-1alpha siRNA and VEGF siRNA technology holds great potential as a novel therapeutic for retinal NV.  相似文献   

4.
Dengue (DEN) is a mosquito-borne viral disease that has become an increasing economic and health burden for the tropical and subtropical world. The lack of an appropriate animal model of DEN has greatly impeded the study of its pathogenesis and the development of vaccines/antivirals. We recently reported a DEN virus 2 (DENV-2) strain (D2Y98P) that lethally infects immunocompromised AG129 mice, resulting in organ damage or dysfunction and increased vascular permeability, hallmarks of severe DEN in patients (G. K. Tan et al., PLoS Negl. Trop. Dis. 4:e672, 2010). Here we report the identification of one critical virulence determinant of strain D2Y98P. By mutagenesis, we showed that a Phe-to-Leu alteration at amino acid position 52 in nonstructural protein NS4B completely abolished the pathogenicity of the D2Y98P virus, as evidenced by a lack of lethality and the absence of histological signs of disease, which correlated with reduced viral titers and intact vascular permeability. Conversely, a Leu-to-Phe alteration at position 52 of NS4B in nonvirulent DENV-2 strain TSV01 led to 80% lethality and increased viremia. The NS4B(Phe52) viruses displayed enhanced RNA synthesis in mammalian cells but not in mosquito cells. The increased viral RNA synthesis was independent of the ability of NS4B to interfere with the host type I interferon response. Overall, our results demonstrate that Phe at position 52 in NS4B confers virulence in mice on two independent DENV-2 strains through enhancement of viral RNA synthesis. In addition to providing further insights into the functional role of NS4B protein, our findings further support a direct relationship between viral loads and DEN pathogenesis in vivo, consistent with observations in DEN patients.  相似文献   

5.
6.
Xie X  Wang QY  Xu HY  Qing M  Kramer L  Yuan Z  Shi PY 《Journal of virology》2011,85(21):11183-11195
We report a novel inhibitor that selectively suppresses dengue virus (DENV) by targeting viral NS4B protein. The inhibitor was identified by screening a 1.8-million-compound library using a luciferase replicon of DENV serotype 2 (DENV-2). The compound specifically inhibits all four serotypes of DENV (50% effective concentration [EC(50)], 1 to 4 μM; and 50% cytotoxic concentration [CC(50)], >40 μM), but it does not inhibit closely related flaviviruses (West Nile virus and yellow fever virus) or nonflaviviruses (Western equine encephalomyelitis virus, Chikungunya virus, and vesicular stomatitis virus). A mode-of-action study suggested that the compound inhibits viral RNA synthesis. Replicons resistant to the inhibitor were selected in cell culture. Sequencing of the resistant replicons revealed two mutations (P104L and A119T) in the viral NS4B protein. Genetic analysis, using DENV-2 replicon and recombinant viruses, demonstrated that each of the two NS4B mutations alone confers partial resistance and double mutations confer additive resistance to the inhibitor in mammalian cells. In addition, we found that a replication defect caused by a lethal NS4B mutation could be partially rescued through trans complementation. The ability to complement NS4B in trans affected drug sensitivity when a single cell was coinfected with drug-sensitive and drug-resistant viruses. Mechanistically, NS4B was previously shown to interact with the viral NS3 helicase domain; one of the two NS4B mutations recovered in our resistance analysis-P104L-abolished the NS3-NS4B interaction (I. Umareddy, A. Chao, A. Sampath, F. Gu, and S. G. Vasudevan, J. Gen. Virol. 87:2605-2614, 2006). Collectively, the results suggest that the identified inhibitor targets the DENV NS4B protein, leading to a defect in viral RNA synthesis.  相似文献   

7.
8.
RNA silencing is conserved in a broad range of eukaryotes and operates in the development and maintenance of genome integrity in many organisms. Plants have adapted this system for antiviral defense, and plant viruses have in turn developed mechanisms to suppress RNA silencing. RNA silencing-related RNA inactivation is likely based on target RNA cleavage or translational arrest. Although it is widely assumed that virus-induced gene silencing (VIGS) promotes the endonucleolytic cleavage of the viral RNA genome, this popular assumption has never been tested experimentally. Here we analyzed the viral RNA targeting by VIGS in tombusvirus-infected plants, and we show evidence that antiviral response of VIGS is based on viral RNA cleavage by RNA-induced silencing effector complex (RISC) programmed by virus-specific small interfering RNAs (siRNAs). In addition, we found that the RISC-mediated cleavages do not occur randomly on the viral genome. Indeed, sequence analysis of cloned cleavage products identified hot spots for target RNA cleavage, and the regions of specific RISC-mediated cleavages are asymmetrically distributed along the positive- and negative-sense viral RNA strands. In addition, we identified viral siRNAs containing high-molecular-mass protein complexes purified from the recovery leaves of the silencing suppressor mutant virus-infected plants. Strikingly, these large nucleoproteins cofractionated with microRNA-containing complexes, suggesting that these nucleoproteins are silencing related effector complexes.  相似文献   

9.
Recent studies suggest that plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of the fibrinolytic system, may promote the development of asthma. To further investigate the significance of PAI-1 in the pathogenesis of asthma and determine the possibility that PAI-1 could be a therapeutic target for asthma, this study was conducted. First, PAI-1 levels in induced sputum (IS) from asthmatic subjects and healthy controls were measured. In asthmatic subjects, IS PAI-1 levels were elevated, compared with that of healthy controls, and were significantly higher in patients with long-duration asthma compared with short-duration asthma. PAI-1 levels were also found to correlate with IS transforming growth factor-β levels. Then, acute and chronic asthma models induced by ovalbumin were established in PAI-1-deficient mice and wild-type mice that received intra-airway administrations of small interfering RNA against PAI-1 (PAI-1-siRNA). We could demonstrate that eosinophilic airway inflammation and airway hyperresponsiveness were reduced in an acute asthma model, and airway remodeling was suppressed in a chronic asthma model in both PAI-1-deficient mice and wild-type mice that received intra-airway administration of PAI-1-siRNA. These results indicate that PAI-1 is strongly involved in the pathogenesis of asthma, and intra-airway administration of PAI-1-siRNA may be able to become a new therapeutic approach for asthma.  相似文献   

10.
11.
Five dengue (DEN) virus-specific R5F2R4 peptide-conjugated phosphorodiamidate morpholino oligomers (P4-PMOs) were evaluated for their ability to inhibit replication of DEN virus serotype 2 (DEN-2 virus) in mammalian cell culture. Initial growth curves of DEN-2 virus 16681 were obtained in Vero cells incubated with 20 microM P4-PMO compounds. At 6 days after infection, a P4-PMO targeting the 3'-terminal nucleotides of the DEN-2 virus genome and a random-sequence P4-PMO showed relatively little suppression of DEN-2 virus titer (0.1 and 0.9 log10, respectively). P4-PMOs targeting the AUG translation start site region of the single open reading frame and the 5' cyclization sequence region had moderate activity, generating 1.6- and 1.8-log10 reductions. Two P4-PMO compounds, 5'SL and 3'CS (targeting the 5'-terminal nucleotides and the 3' cyclization sequence region, respectively), were highly efficacious, each reducing the viral titer by greater than 5.7 log10 compared to controls at 6 days after infection with DEN-2 virus. Further experiments showed that 5'SL and 3'CS inhibited DEN-2 virus replication in a dose-dependent and sequence-specific manner. Treatment with 10 microM 3'CS reduced the titers of all four DEN virus serotypes, i.e., DEN-1 (strain 16007), DEN-2 (16681), DEN-3 (16562), and DEN-4 (1036) viruses by over 4 log10, in most cases to below detectable limits. The extent of 3'CS efficacy was affected by the timing of compound application in relation to viral infection of the cells. The 5'SL and 3'CS P4-PMOs did not suppress the replication of West Nile virus NY99 in Vero cells. These data indicate that further evaluation of the 5'SL and 3'CS compounds as potential DEN virus therapeutics is warranted.  相似文献   

12.
目的探讨沉默生存素(survivin)基因表达的干扰RNA对人胃癌BGC-823细胞增殖和成瘤能力的影响。方法应用已经在细胞上验证能够有效沉默survivin的小分子干扰RNA(shRNA-survivin-1),并在体外实验的基础上,建立稳定表达干扰RNA细胞系,进一步探讨干扰RNA稳定表达对胃癌BGC-823细胞生长和裸鼠移植成瘤的影响。结果 shRNA-survivin-1有效沉默人胃癌BGC-823细胞survivin mRNA的表达,成功筛选shRNA-sur-vivin-1稳定表达细胞株BGC/siRNA-1细胞,实验表明,BGC/siRNA-1细胞的生长曲线缓慢上升,细胞增殖能力下降;BGC/siRNA-1细胞裸鼠移植成瘤体积与对照组相比,明显减小(P〈0.05)。结论 shRNA-survivin-1可以沉默survivin基因的表达,可以显著抑制胃癌BGC-823细胞的增殖,并降低胃癌BGC-823细胞的成瘤能力,本研究为靶向survivin的RNA干扰在胃癌的基因治疗提供了有力的理论依据和技术储备。 更多还原  相似文献   

13.
目的探讨干扰RNA沉默生存素(survivin)基因表达对人胃癌BGC-823细胞增殖和凋亡的影响。方法设计并合成3条靶向survivin的小分子干扰RNA(siRNA),构建表达性干扰RNA质粒(shRNA)——shRNA-survivin-1、shRNA-survivin-2和shRNA-survivin-3,分别转染胃癌BGC-823细胞,实时定量PCR检测干扰RNA沉默survivin mRNA表达效果,Westernblot观察对胃癌BGC-823细胞survivin蛋白质表达的抑制,MTT(四甲基偶氮唑盐)比色法分析检测细胞生长抑制率,流式细胞计数检测各组细胞周期和凋亡率,探讨干扰RNA对胃癌BGC-823细胞生长的影响。结果在体外,shRNA-survivin-1有效沉默人胃癌BGC-823细胞survivin mRNA的表达,使sur-vivin mRNA相对水平明显降低(P〈0.05),survivin蛋白质表达抑制,72h细胞生长抑制率达74.92%(P〈0.05),shRNA-survivin-1使G2/M期细胞百分比明显增加,凋亡率显著增加(P〈0.05)。结论 shRNA-survivin-1可以沉默survivin基因的表达,可以显著抑制胃癌BGC-823细胞的增殖,在一定程度上诱导其自发凋亡。本研究为靶向sur-vivin的RNA干扰在胃癌的基因治疗提供了有力的理论依据和技术储备。  相似文献   

14.
Smooth muscle cell (SMC) proliferation and migration are key processes that occur in the reparative response to injury after percutaneous coronary intervention and in failed bypass grafts for the treatment of atherosclerosis. In the present study, we generated novel synthetic small interfering RNA (siRNA) molecules targeting the coding region of human early growth response-1 (EGR-1) mRNA that attenuate the expression of EGR-1 and that of fibroblast growth factor-2 (FGF-2) and granulocyte-colony stimulating factor (G-CSF). These agents suppressed SMC proliferation in a dose-dependent and non-toxic manner and blocked SMC regrowth from the wound edge following mechanical injury in vitro. In contrast, the scrambled counterpart did not inhibit SMC proliferation, EGR-1 protein expression or SMC regrowth after injury. These findings demonstrate that EGR-1 siRNA can serve as inhibitors of SMC proliferation and wound repair suggesting that these agents may potentially be useful in the control of vascular proliferative disorders.  相似文献   

15.
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed ungulates that can lead to severe losses in the livestock production and export industries. Although vaccines have been extensively used to control FMD, there is no antiviral therapy available to treat ongoing infections with FMD virus (FMDV). Six peptide-conjugated morpholino oligomers (PPMOs) with sequences complementary to various 21-nucleotide segments of the 5' and 3' untranslated regions (UTRs) of the FMDV genome (strain A(24) Cruzeiro/Brazil/1955 [A(24)Cru]) were evaluated in cell cultures. Three of the PPMOs, targeting domain 5 of the internal ribosome entry site (5D PPMO), and the two translation start codon regions (AUG1 and AUG2 PPMOs), showed high levels of anti-FMDV activity. A dose-dependent and sequence-specific reduction in viral titers of greater than 5 log(10), with a concomitant reduction of viral protein and RNA expression, was achieved at low micromolar concentrations. Under identical conditions, three other PPMOs targeting the 5'-terminal region of the genome, the cis-acting replication element in the 5' UTR, and the 3' "ab" stem-loop showed less dramatic titer reductions of 1.5 log(10) to 2 log(10). Treatment with 5D PPMO reduced the titers of FMDV strains representing five different serotypes by 2 log(10) to 4 log(10) compared to those of the controls. A(24)Cru-infected BHK-21 cells treated repeatedly with 5D or AUG2 PPMO generated resistant viruses for which phenotypic and genotypic properties were defined. Notably, three passages with low concentrations of the AUG1 PPMO extinguished all traces of detectable virus. The results indicate that PPMOs have potential for treating FMDV infections and that they also represent useful tools for studying picornaviral translation and evolution.  相似文献   

16.
Hypoxia-induced angiogenesis plays an important role in the malignancy of solid tumors. A number of recent studies including our own have suggested that Rho family small GTPases are involved in this process, and Racl, a prominent member of the Rho family, may be critical in regulating hypoxia-induced gene activation of several angiogenesis factors and tumor suppressors. To fur-ther define Racl function in angiogenesis and to explore novel approaches to modulate angiogenesis, we employed the small interference RNA technique to knock down gene expression of Racl in gastric cancer cell line AGS that expresses a high level of Racl.Both the mRNA and protein levels of Racl in the AGS cells were decreased dramatically after transfection with a Racl-specific siRNA vector. When the conditioned medium derived from the Racl downregulated AGS cells was applied to the human endothelial cells. it could significantly inhibit the cell proliferation. Further study proved that, VEGF and HIF-la, two angiogenesis promoting factors, were found to be downregulated whereas p53 and VHL, which are tumor suppressors and angiogenesis inhibitors. were upregulated in the Racl siRNA transfected cells. Our results suggest that Racl may be involved in angiogenesis by controlling the expression of angiogenesis-related factors and provide a possible strategy for the treatment of tumor angiogenesis by targeting the Racl GTPase.  相似文献   

17.
Inhibition of hepatitis B virus in mice by RNA interference   总被引:137,自引:0,他引:137  
Hepatitis B virus (HBV) infection substantially increases the risk of chronic liver disease and hepatocellular carcinoma in humans. RNA interference (RNAi) of virus-specific genes has emerged as a potential antiviral mechanism. Here we show that RNAi can be applied to inhibit production of HBV replicative intermediates in cell culture and in immunocompetent and immunodeficient mice transfected with an HBV plasmid. Cotransfection with plasmids expressing short hairpin RNAs (shRNAs) homologous to HBV mRNAs induced an RNAi response. Northern and Southern analyses of mouse liver RNA and DNA showed substantially reduced levels of HBV RNAs and replicated HBV genomes upon RNAi treatment. Secreted HBV surface antigen (HBsAg) was reduced by 94.2% in cell culture and 84.5% in mouse serum, whereas immunohistochemical detection of HBV core antigen (HBcAg) revealed >99% reduction in stained hepatocytes upon RNAi treatment. Thus, RNAi effectively inhibited replication initiation in cultured cells and mammalian liver, showing that such an approach could be useful in the treatment of viral diseases.  相似文献   

18.
Small interfering RNAs (siRNAs) efficiently inhibit gene expression by RNA interference. Here, we report efficient inhibition, by both synthetic and vector-derived siRNAs, of hepatitis C virus (HCV) replication, as well as viral protein synthesis, using an HCV replicon system. The siRNAs were designed to target the 5′ untranslated region (5′ UTR) of the HCV genome, which has an internal ribosomal entry site for the translation of the entire viral polyprotein. Moreover, the 5′ UTR is the most conserved region in the HCV genome, making it an ideal target for siRNAs. Importantly, we have identified an effective site in the 5′ UTR at which ~80% suppression of HCV replication was achieved with concentrations of siRNA as low as 2.5 nM. Furthermore, DNA-based vectors expressing siRNA against HCV were also effective, which might allow the efficient delivery of RNAi into hepatocytes in vivo using viral vectors. Our results support the feasibility of using siRNA-based gene therapy to inhibit HCV replication, which may prove to be valuable in the treatment of hepatitis C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号