首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Caenorhabditis elegans teneurin ortholog, ten-1, plays an important role in gonad and pharynx development. We found that lack of TEN-1 does not affect germline proliferation but leads to local basement membrane deficiency and early gonad disruption. Teneurin is expressed in the somatic precursor cells of the gonad that appear to be crucial for gonad epithelialization and basement membrane integrity. Ten-1 null mutants also arrest as L1 larvae with malformed pharynges and disorganized pharyngeal basement membranes. The pleiotropic phenotype of ten-1 mutant worms is similar to defects found in basement membrane receptor mutants ina-1 and dgn-1 as well as in the mutants of the extracellular matrix component laminin, epi-1. We show that the ten-1 mutation is synthetic lethal with mutations of genes encoding basement membrane components and receptors due to pharyngeal or hypodermal defects. This indicates that TEN-1 could act redundantly with integrin INA-1, dystroglycan DGN-1, and laminin EPI-1 in C. elegans development. Moreover, ten-1 deletion sensitizes worms to loss of nidogen nid-1 causing a pharynx unattached phenotype in ten-1;nid-1 double mutants. We conclude that TEN-1 is important for basement membrane maintenance and/or adhesion in particular organs and affects the function of somatic gonad precursor cells.  相似文献   

2.
Basement membranes are specialized extracellular matrices consisting of tissue-specific organizations of multiple matrix molecules and serve as structural barriers as well as substrates for cellular interactions. The network of collagen IV is thought to define the scaffold integrating other components such as, laminins, nidogens or perlecan, into highly organized supramolecular architectures. To analyze the functional roles of the major collagen IV isoform alpha1(IV)(2)alpha2(IV) for basement membrane assembly and embryonic development, we generated a null allele of the Col4a1/2 locus in mice, thereby ablating both alpha-chains. Unexpectedly, embryos developed up to E9.5 at the expected Mendelian ratio and showed a variable degree of growth retardation. Basement membrane proteins were deposited and assembled at expected sites in mutant embryos, indicating that this isoform is dispensable for matrix deposition and assembly during early development. However, lethality occurred between E10.5-E11.5, because of structural deficiencies in the basement membranes and finally by failure of the integrity of Reichert's membrane. These data demonstrate for the first time that collagen IV is fundamental for the maintenance of integrity and function of basement membranes under conditions of increasing mechanical demands, but dispensable for deposition and initial assembly of components. Taken together with other basement membrane protein knockouts, these data suggest that laminin is sufficient for basement membrane-like matrices during early development, but at later stages the specific composition of components including collagen IV defines integrity, stability and functionality.  相似文献   

3.
Nidogen (entactin) can form a ternary complex with type IV collagen and laminin and is thought to play a critical role in basement membrane assembly. We show that the Caenorhabditis elegans nidogen homologue nid-1 generates three isoforms that differ in numbers of rod domain endothelial growth factor repeats and are differentially expressed during development. NID-1 appears at the start of embryonic morphogenesis associated with muscle cells and subsequently accumulates on pharyngeal, intestinal, and gonad primordia. In larvae and adults NID-1 is detected in most basement membranes but accumulates most strongly around the nerve ring and developing gonad. NID-1 is concentrated under dense bodies, at the edges of muscle quadrants, and on the sublateral nerves that run under muscles. Two deletions in nid-1 were isolated: cg119 is a molecular null, whereas cg118 produces truncated NID-1 missing the G2 collagen IV binding domain. Neither deletion causes overt abnormal phenotypes, except for mildly reduced fecundity. Truncated cg118 NID-1 shows wild-type localization, demonstrating that the G2 domain is not necessary for nidogen assembly. Both nid-1 mutants assemble type IV collagen in a completely wild-type pattern, demonstrating that nidogen is not essential for type IV collagen assembly into basement membranes.  相似文献   

4.
Type IV collagen in Caenorhabditis elegans is produced by two essential genes, emb-9 and let-2, which encode α1- and α2-like chains, respectively. The distribution of EMB-9 and LET-2 chains has been characterized using chain-specific antisera. The chains colocalize, suggesting that they may function in a single heterotrimeric collagen molecule. Type IV collagen is detected in all basement membranes except those on the pseudocoelomic face of body wall muscle and on the regions of the hypodermis between body wall muscle quadrants, indicating that there are major structural differences between some basement membranes in C. elegans. Using lacZ/green fluorescent protein (GFP) reporter constructs, both type IV collagen genes were shown to be expressed in the same cells, primarily body wall muscles, and some somatic cells of the gonad. Although the pharynx and intestine are covered with basement membranes that contain type IV collagen, these tissues do not express either type IV collagen gene. Using an epitope-tagged emb-9 construct, we show that type IV collagen made in body wall muscle cells can assemble into the pharyngeal, intestinal, and gonadal basement membranes. Additionally, we show that expression of functional type IV collagen only in body wall muscle cells is sufficient for C. elegans to complete development and be partially fertile. Since type IV collagen secreted from muscle cells only assembles into some of the basement membranes that it has access to, there must be a mechanism regulating its assembly. We propose that interaction with a cell surface–associated molecule(s) is required to facilitate type IV collagen assembly.  相似文献   

5.
Basement membranes are thin sheets of specialized extracellular matrix molecules that are important for supplying mechanical support and for providing an interactive surface for cell morphology. Prior to secretion and assembly, basement membrane molecules undergo intracellular processing, which is essential for their function. We have identified several mutations in a procollagen processing enzyme, lysyl hydroxylase (let-268). The Caenorhabditis elegans lysyl hydroxylase is highly similar to the vertebrate lysyl hydroxylase, containing all essential motifs required for enzymatic activity, and is the only lysyl hydroxylase found in the C. elegans sequenced genome. In the absence of C. elegans lysyl hydroxylase, type IV collagen is expressed; however, it is retained within the type IV collagen-producing cells. This observation indicates that in let-268 mutants the processing and secretion of type IV collagen is disrupted. Our examination of the body wall muscle in these mutant animals reveals normal myofilament assembly prior to contraction. However, once body wall muscle contraction commences the muscle cells separate from the underlying epidermal layer (the hypodermis) and the myofilaments become disorganized. These observations indicate that type IV collagen is required in the basement membrane for mechanical support and not for organogenesis of the body wall muscle.  相似文献   

6.
In this study, we have examined the spatiotemporal distribution of the alpha 1 integrin subunit, a putative laminin and collagen receptor, in avian embryos, using immunofluorescence microscopy and immunoblotting techniques. We used an antibody raised against a gizzard 175 x 10(3) M(r) membrane protein which was described previously and which we found to be immunologically identical to the chicken alpha 1 integrin subunit. In adult avian tissues, alpha 1 integrin exhibited a very restricted pattern of expression; it was detected only in smooth muscle and in capillary endothelial cells. In the developing embryo, alpha 1 integrin subunit expression was discovered in addition to smooth muscle and capillary endothelial cells, transiently, in both central and peripheral nervous systems and in striated muscles, in association with laminin and collagen IV. alpha 1 integrin was practically absent from most epithelial tissues, including the liver, pancreas and kidney tubules, and was weakly expressed by tissues that were not associated with laminin and collagen IV. In the nervous system, alpha 1 integrin subunit expression occurred predominantly at the time of early neuronal differentiation. During skeletal muscle development, alpha 1 integrin was expressed on myogenic precursors, during myoblast migration, and in differentiating myotubes. alpha 1 integrin disappeared from skeletal muscle cells as they became contractile. In visceral and vascular smooth muscles, alpha 1 integrin appeared specifically during early smooth muscle cell differentiation and, later, was permanently expressed after cell maturation. These results indicate that (i) the expression pattern of alpha 1 integrin is consistent with a function as a laminin/collagen IV receptor; (ii) during avian development, expression of the alpha 1 integrin subunit is spatially and temporally regulated; (iii) during myogenesis and neurogenesis, expression of alpha 1 integrin is transient and correlates with cell migration and differentiation.  相似文献   

7.
Muscle cells are surrounded by extracellular matrix, the components of which play an important role in signalling mechanisms involved in their development. In mice, loss of collagen XV, a component of basement membranes expressed primarily in skeletal muscles, results in a mild skeletal myopathy. We have determined the complete zebrafish collagen XV primary sequence and analysed its expression and function in embryogenesis. During the segmentation period, expression of the Col15a1 gene is mainly found in the notochord and its protein product is deposited exclusively in the peri-notochordal basement membrane. Morpholino mediated knock-down of Col15a1 causes defects in notochord differentiation and in fast and slow muscle formation as shown by persistence of axial mesodermal marker gene expression, disorganization of the peri-notochodal basement membrane and myofibrils, and a U-shape myotome. In addition, the number of medial fast-twitch muscle fibers was substantially increased, suggesting that the signalling by notochord derived Hh proteins is enhanced by loss of collagen XV. Consistent with this, there is a concomitant expansion of patched-1 expression in the myotome of morphant embryos. Together, these results indicate that collagen XV is required for notochord differentiation and muscle development in the zebrafish embryo and that it interplays with Shh signalling.  相似文献   

8.
The F-spondin family of extracellular matrix proteins has been implicated in axon outgrowth, fasciculation and neuronal cell migration, as well as in the differentiation and proliferation of non-neuronal cells. In screens for mutants defective in C. elegans embryonic morphogenesis, we identified SPON-1, the only C. elegans member of the spondin family. SPON-1 is synthesized in body muscles and localizes to integrin-containing structures on body muscles and to other basement membranes. SPON-1 maintains strong attachments of muscles to epidermis; in the absence of SPON-1, muscles progressively detach from the epidermis, causing defective epidermal elongation. In animals with reduced integrin function, SPON-1 becomes dose dependent, suggesting that SPON-1 and integrins function in concert to promote the attachment of muscles to the basement membrane. Although spon-1 mutants display largely normal neurite outgrowth, spon-1 synergizes with outgrowth defective mutants, revealing a cryptic role for SPON-1 in axon extension. In motoneurons, SPON-1 acts in axon guidance and fasciculation, whereas in interneurons SPON-1 maintains process position. Our results show that a spondin maintains cell-matrix adhesion in multiple tissues.  相似文献   

9.
Kubota Y  Nagata K  Sugimoto A  Nishiwaki K 《Genetics》2012,190(4):1379-1388
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is directed by gonadal distal tip cells (DTCs). Here we report that a dominant mutation in the EMB-9/type IV collagen α1 subunit can compensate for loss of FBL-1 activity in gonadogenesis. A specific amino acid substitution in the noncollagenous 1 (NC1) domain of EMB-9 suppressed the fbl-1 null mutant. FBL-1 was required to maintain wild-type EMB-9 in the basement membrane (BM), whereas mutant EMB-9 was retained in the absence of FBL-1. EMB-9 (either wild type or mutant) localization in the BM enhanced PAT-3/β-integrin expression in DTCs. In addition, overexpression of PAT-3 partially rescued the DTC migration defects in fbl-1 mutants, suggesting that EMB-9 acts in part through PAT-3 to control DTC migration. In contrast to the suppression of fbl-1(tk45), mutant EMB-9 enhanced the gonadal defects of gon-1(e1254), suggesting that it gained a function similar to that of wild-type FBL-1, which promotes DTC migration by inhibiting GON-1. We propose that FBL-1 and GON-1 control EMB-9 accumulation in the BM and promote PAT-3 expression to control DTC migration.  相似文献   

10.
D B Wilson  D P Wyatt 《Acta anatomica》1989,136(2):165-171
Abnormal loop-tail (Lp/Lp) mutant mouse embryos exhibiting severe exencephaly and myeloschisis were analyzed and compared with their normal (+/+; Lp/+) littermates by means of immunofluorescence histochemistry to determine regional differences in the distribution of laminin (L) and fibronectin (FN). In the neural basement membrane and adjacent mesenchymal cell matrix of the abnormal embryos, regional differences in the deposition of L and FN were similar to those in normal littermates. Moreover, most of the putative neural crest (NC) cells appeared to emigrate normally in terms of their site of detachment and migration pathways, despite the severe topographic distortions and loss of neuroepithelial integrity. However, some putative NC cells projected incorrectly from the 'luminal' surface of the neuroepithelium, suggesting that some of the NC may be abnormal or sequestered and prevented from appropriate detachment and emigration from the neural tube.  相似文献   

11.
The Fras1/Frem gene family encodes for structurally similar, developmentally regulated extracellular matrix proteins. Mutations in Fras1, Frem1 and Frem2 have been identified in different classes of mouse bleb mutants, while defects in the human orthologs FRAS1 and FREM2 are causative for Fraser syndrome. The hallmark phenotypic feature of bleb mice is embryonic skin blistering due to dermal-epidermal detachment. The similarity of the phenotypic characteristics among the bleb mouse mutants, together with the fact that Fras1/Frem proteins are co-localized in embryonic epithelial basement membranes, suggest that they operate in a common pathway. Here, we report for the first time the immunofluorescence pattern of Frem3 and provide a comparative analysis of the spatiotemporal localization of all Fras1/Frem proteins during mouse embryonic development. We demonstrate their overall co-localization in embryonic epithelial basement membranes, with emphasis on areas of phenotypic interest such as eyelids, limbs, kidneys, lungs and organs of the gastrointestinal tract and the central nervous system. We further studied collagen VII, impairment of which produces dystrophic epidermolysis bullosa, a postnatal skin blistering disorder. We show that basement membrane levels of collagen VII rise at late embryonic life, concomitant with descending Fras1/Frem immunolabeling.  相似文献   

12.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

13.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.  相似文献   

14.
Hsp47 is a molecular chaperone that specifically recognizes procollagen in the endoplasmic reticulum. Hsp47-null mouse embryos produce immature type I collagen and form discontinuous basement membranes. We established Hsp47-/- embryonic stem cell lines and examined formation of basement membrane and production of type IV collagen in embryoid bodies, a model for postimplantation egg-cylinder stage embryos. The visceral endodermal cell layers surrounding Hsp47-/- embryoid bodies were often disorganized, a result that suggested abnormal function of the basement membrane under the visceral endoderm. Rate of type IV collagen secretion by Hsp47-/- cells was fourfold lower than that of Hsp47+/+ cells. Furthermore, type IV collagen secreted from Hsp47-/- cells was much more sensitive to protease digestion than was type IV collagen secreted from Hsp47+/+ cells, which suggested insufficient or incorrect triple helix formation in type IV collagen in the absence of Hsp47. These results indicate for the first time that Hsp47 is required for the molecular maturation of type IV collagen and suggest that misfolded type IV collagen causes abnormal morphology of embryoid bodies.  相似文献   

15.
As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.  相似文献   

16.
In adult newts, basal epidermal cells adjacent to a fresh wound move toward the damaged area by migrating over the epidermal basement membrane. In an attempt to determine which basement membrane components mediate this migration, small pieces of glass coated with various natural matrices, purified proteins, or fragments of proteins were implanted into skin wounds such that epidermal cells attempting to form a wound epithelium would encounter the implants. Laminin derived from a cell line (M1536-B3) that produces no type IV collagen was inactive as a migration substrate. Migration on recombinant entactin was somewhat better than on laminin but was still only ~ 14% of that on type I collagen. M15 matrix, a laminin and entactin-containing product of M1536-B3 cells, was no better than entactin alone. Type IV collagen was an excellent substrate, producing slightly more migration than corresponding concentrations of type I collagen at nearly all concentrations tested. Migration on type IV lacking the NC1 domain was at least as good as on intact type IV. All the activity in type IV was present in a 95 kD fragment (al (IV)95) from the carboxy terminal two-thirds of the α1 chain. Approximately 60% of the activity on β1(IV)95 was obtained on implants coated with a 110 amino acid fragment of the α1 chain derived from the carboxy terminal half of α1(IV)95. Adding the synthetic peptide, arg-gly-asp-ser (RGDS) to the medium, biocked migration on fibronectin-coated implants but had no effect on implants coated with type IV, suggesting that migration on type IV involves different cell surface receptors than those mediating migration over fibronectin. Matrigel, a commercial product containing most basement membrane components, was a poor migration substrate. Thus if type IV mediates basal cell migration toward a wound in vivo, there may have to be some alterations in basement membrane structure to allow epidermal receptors to access type IV active site(s). © 1994 Wiley-Liss, Inc.  相似文献   

17.
The role of collagen-derived proteolytic fragments in angiogenesis.   总被引:12,自引:0,他引:12  
Basement membrane molecules and fragments derived from them are regulators of biological activities such as cell growth, differentiation and migration. This review describes proteolytically derived fragments from the non-collagenous (NC1) domain at the C-terminus of the basement membrane collagens type IV, XV and XVIII, which have been implicated as regulators of angiogenesis. Endostatin is an endogenous collagen XVIII/NC1 derivative, inhibiting endothelial cell proliferation and migration in vitro and tumor-growth in vivo. A homologous NC1 domain fragment of type XV collagen has anti-angiogenic activity as well. Furthermore, NC1 domain fragments of the most abundant basement membrane collagen, type IV collagen, have been shown to inhibit induced vessel growth.  相似文献   

18.
Type IV collagen is a major component of basement membranes. We have characterized 11 mutations in emb-9, the α1(IV) collagen gene of Caenorhabditis elegans, that result in a spectrum of phenotypes. Five are substitutions of glycines in the Gly-X-Y domain and cause semidominant, temperature-sensitive lethality at the twofold stage of embryogenesis. One is a glycine substitution that causes recessive, non–temperature-sensitive larval lethality. Three putative null alleles, two nonsense mutations and a deletion, all cause recessive, non–temperature-sensitive lethality at the threefold stage of embryogenesis. The less severe null phenotype indicates that glycine substitution containing mutant chains dominantly interfere with the function of other molecules. The emb-9 null mutants do not stain with anti–EMB-9 antisera and show intracellular accumulation of the α2(IV) chain, LET-2, indicating that LET-2 assembly and/or secretion requires EMB-9. Glycine substitutions in either EMB-9 or LET-2 cause intracellular accumulation of both chains. The degree of intracellular accumulation differs depending on the allele and temperature and correlates with the severity of the phenotype. Temperature sensitivity appears to result from reduced assembly/secretion of type IV collagen, not defective function in the basement membrane. Because the dominant interference of glycine substitution mutations is maximal when type IV collagen secretion is totally blocked, this interference appears to occur intracellularly, rather than in the basement membrane. We suggest that the nature of dominant interference caused by mutations in type IV collagen is different than that caused by mutations in fibrillar collagens.  相似文献   

19.
Protein A-gold immunocytochemistry was applied in combination with morphometrical approaches to reveal the alpha 1(IV), alpha 2(IV), and alpha 3(IV) chains of type IV collagen as well as entactin on renal basement membranes, particularly on the glomerular one, during maturation. The results have indicated that a heterogeneity between renal basement membranes appears during the maturation process. In the glomerulus at the capillary loop stage, both the epithelial and endothelial cell basement membranes were labeled for the alpha 1(IV) and alpha 2(IV) chains of type IV collagen and entactin. After fusion, both proteins were present on the entire thickness of the typical glomerular basement membrane. At later stages, the labeling for alpha 1(IV) and alpha 2(IV) chains of type IV collagen decreased and drifted towards the endothelial side, whereas the labeling for the alpha 3(IV) chain increased and remained centrally located. Entactin remained on the entire thickness of the basement membrane during maturation and in adult stage. The distribution of endogenous serum albumin in the glomerular wall was studied during maturation, as a reference for the functional properties of the glomerular basement membrane. This distribution, dispersed through the entire thickness of the basement membrane at early stages, shifted towards the endothelial side of the lamina densa with maturation, demonstrating a progressive acquisition of the permselectivity. These results demonstrate that modifications in the content and organization of the different constituents of basement membranes occur with maturation and are required for the establishment of the filtration properties of the glomerular basement membrane.  相似文献   

20.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号