首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD8+ T cell responses are important for recognizing and resolving viral infections. To better understand the selection and hierarchy of virus-specific T cell responses, we compared the T cell receptor (TCR) clonotype in parent and hybrid strains of respiratory syncytial virus-infected mice. K(d)M2(82-90) (SYIGSINNI) in BALB/c and D(b)M(187-195) (NAITNAKII) in C57Bl/6 are both dominant epitopes in parent strains but assume a distinct hierarchy, with K(d)M2(82-90) dominant to D(b)M(187-195) in hybrid CB6F1/J mice. The dominant K(d)M2(82-90) response is relatively public and is restricted primarily to the highly prevalent Vβ13.2 in BALB/c and hybrid mice, whereas D(b)M(187-195) responses in C57BL/6 mice are relatively private and involve multiple Vβ subtypes, some of which are lost in hybrids. A significant frequency of TCR CDR3 sequences in the D(b)M(187-195) response have a distinct "(D/E)WG" motif formed by a limited number of recombination strategies. Modeling of the dominant epitope suggested a flat, featureless structure, but D(b)M(187-195) showed a distinctive structure formed by Lys(7). The data suggest that common recombination events in prevalent Vβ genes may provide a numerical advantage in the T cell response and that distinct epitope structures may impose more limited options for successful TCR selection. Defining how epitope structure is interpreted to inform T cell function will improve the design of future gene-based vaccines.  相似文献   

2.
Accumulation of amyloid-β peptide (Aβ) is considered the triggering factor of pathogenic lesions in Alzheimer's disease (AD), and vaccines targeting Aβ are promising therapeutic options. However, the occurrence of meningoencephalitides attributed to T cell responses in 6% of Aβ-immunized patients underscores the need for a better understanding of T cell responses to Aβ. We characterized the parameters controlling the magnitude of Aβ-specific CD4(+) T cell responses in mice. T cell responsiveness to Aβ1-42 was highly heterogeneous between mouse strains of different H-2 haplotypes, with SJL/J (H-2(s)) mice displaying a strong response, mainly specific for Aβ10-24, and C57BL/6 (H-2(b)) mice displaying a weak response to Aβ16-30. Surprisingly, C57BL/6 mice congenic for the H-2(s) haplotype (B6.H-2(S)), which display a "permissive" MHC class II allele for presentation of the immunodominant Aβ10-24 epitope, showed a very weak CD4(+) T cell response to Aβ, suggesting that MHC-independent genes downmodulate Aβ-specific CD4(+) T cell responses in C57BL/6 background. Vaccine-induced CD4(+) T cell responses to Aβ were significantly enhanced in both C57BL/6 and B6.H-2(S) mice upon depletion of regulatory T cells (Tregs), whereas Treg-depleted SJL/J mice displayed unaltered Aβ-specific T cell responses. Finally, Treg depletion in C57BL/6 transgenic APPPS1 mice, a mouse model of AD, results in enhanced vaccine-induced CD4(+) T cell responses in AD compared with wild-type animals. We concluded that the magnitude of Aβ-specific CD4(+) T cell responses is critically controlled in both physiological and pathological settings by MHC-independent genetic factors that determine the overall potency of Aβ-specific Treg responses.  相似文献   

3.
The simian virus 40 (SV40) large tumor antigen (Tag) is a virus-encoded oncoprotein which is the target of a strong cytotoxic T-lymphocyte (CTL) response. Three immunodominant H-2(b)-restricted epitopes, designated epitopes I, II/III, and IV, have been defined. We investigated whether induction of CTLs directed against these Tag epitopes might control Tag-induced tumors in SV11(+) (H-2(b)) mice. SV11(+) mice develop spontaneous tumors of the choroid plexus due to expression of SV40 Tag as a transgene. We demonstrate that SV11(+) mice are functionally tolerant to the immunodominant Tag CTL epitopes. CTLs specific for the H-2Kb-restricted Tag epitope IV were induced in SV11(+) mice following adoptive transfer with unprimed C57BL/6 spleen cells and immunization with recombinant vaccinia viruses expressing either full-length Tag or the H-2Kb-restricted epitope IV as a minigene. In addition, irradiation of SV11(+) mice prior to adoptive transfer with unprimed C57BL/6 spleen cells led to the priming of epitope IV-specific CTLs by the endogenous Tag. Induction of epitope IV-specific CTLs in SV11(+) mice by either approach correlated with increased life span and control of the choroid plexus tumor progression, indicating that CTLs specific for the immunodominant Tag epitope IV control the progressive growth of spontaneous tumors induced by this DNA virus oncogene in transgenic mice.  相似文献   

4.
The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.  相似文献   

5.
C57BL/6 mice develop a virus-specific cytotoxic T-lymphocyte (CTL) response after intraperitoneal inoculation with either the DA strain of Theiler's virus or Mengo virus, two members of the Cardiovirus genus. These CTLs contribute to viral clearance in the case of Theiler's virus but do not protect the mice from the fatal encephalomyelitis caused by Mengo virus. In this study we show that DA and Mengo virus-induced CTLs are cross-reactive. The cross-reactivity is due to a conserved, H-2Db-restricted epitope located between amino acid residues 122 and 130 of the VP2 capsid protein (VP2(122-130)). This epitope is immunodominant in C57BL/6 mice infected with Theiler's virus. The VP2(122-130) epitope, initially identified for Mengo virus, is the first CTL epitope described for Theiler's virus.  相似文献   

6.
We describe respiratory syncytial virus (RSV)-specific cytotoxic T-cell (CTL) lines and clones developed from the spleens of C57BL/6 and BALB/c mice. Line 7 and clones derived from it were H-2Kb restricted, whereas line 12 had both Kb and Db components. Both lines, and all the clones except one, could lyse targets infected with either strain A or strain B RSV. Line 7 or 7-11E1 cells (8 x 10(6) to 10 x 10(6) given intravenously cleared RSV from the lungs of infected mice. There was no morbidity or mortality in any of the infected mice whether or not they received T cells. The C57BL/6 mouse is a useful model system in which to study the role of the CTL response in protective immunity to RSV. CTL lines and clones can mediate clearance of RSV from the lungs of normal mice without producing any associated morbidity.  相似文献   

7.
C57BL/6 mice, after immunization and secondary in vitro restimulation with AKR/Gross murine leukemia virus (MuLV)-induced tumors, generate AKR/Gross MuLV-specific CTL. After similar immunization protocols, AKR-H-2b mice fail to generate CTL specific for AKR/Gross MuLV. The basis for nonresponsiveness in AKR.H-2b mice is unknown, however, unlike C57BL/6 mice, AKR.H-2b mice carry endogenous proviruses and express N-ecotropic viral Ag. Thus, clonal deletion of pCTL populations due to the expression of AKR/Gross MuLV-like Ag is a likely mechanism for the nonresponsiveness. To determine if nonresponsiveness is due to clonal deletion, limiting dilution cultures were performed to assess the presence of pCTL specific for AKR/Gross MuLV. Our study demonstrates that the frequencies of pCTL specific for AKR/Gross MuLV are similar in both the responder C57BL/6 and nonresponder AKR.H-2b strains. The observation that normal levels of AKR/Gross MuLV-specific pCTL exist in AKR.H-2b mice, suggests that clonal deletion of pCTL is not responsible for the inability of AKR.H-2b mice to generate anti-AKR/Gross virus-specific CTL.  相似文献   

8.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

9.
C57BL/6 (B6; H-2(b)) mice mount strong AKR/Gross murine leukemia virus (MuLV)-specific CD8(+) CTL responses to the immunodominant K(b)-restricted epitope, KSPWFTTL, of endogenous AKR/Gross MuLV. In sharp contrast, spontaneous virus-expressing AKR.H-2(b) congenic mice are low/nonresponders for the generation of AKR/Gross MuLV-specific CTL. Furthermore, when viable AKR.H-2(b) spleen cells are cocultured with primed responder B6 antiviral precursor CTL, the AKR.H-2(b) cells function as "veto" cells that actively mediate the inhibition of antiviral CTL generation. AKR.H-2(b) veto cell inhibition is virus specific, MHC restricted, contact dependent, and mediated through veto cell Fas ligand/responder T cell Fas interactions. In this study, following specific priming and secondary in vitro restimulation, antiretroviral CD8(+) CTL were identified by a labeled K(b)/KSPWFTTL tetramer and flow cytometry, enabling direct visualization of AKR.H-2(b) veto cell-mediated depletion of these CTL. A 65-93% reduction in the number of B6 K(b)/KSPWFTTL tetramer(+) CTL correlated with a similar reduction in antiviral CTL cytotoxicity. Addition on sequential days to the antiviral CTL restimulation cultures of either 1) AKR.H-2(b) veto cells or 2) a blocking Fas-Ig fusion protein (to cultures also containing AKR.H-2(b) veto cells) to block inhibition demonstrated that AKR.H-2(b) veto cells begin to inhibit B6 precursor CTL/CTL expansion during days 2 and 3 of the 6-day culture. Shortly thereafter, a high percentage of B6 tetramer(+) CTL cocultured with AKR.H-2(b) veto cells was annexin V positive and Fas(high), indicating apoptosis as the mechanism of veto cell inhibition. Experiments using the irreversible inhibitor emetine demonstrated that AKR.H-2(b) cells had to be metabolically active and capable of protein synthesis to function as veto cells. Of the tetramer-positive CTL that survived veto cell-mediated apoptosis, there was no marked skewing from the preferential usage of Vbeta4, 8.1/8.2, and 11 TCR normally observed. These findings provide further insight into the complexity of host/virus interactions and suggest a fail-safe escape mechanism by virus-infected cells for epitopes residing in critical areas of viral proteins that cannot accommodate variations of amino acid sequence.  相似文献   

10.
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.  相似文献   

11.
Cytotoxic T lymphocyte (CTL) activity directed against paternal alloantigen was examined in allogeneically pregnant mice using various allogeneic combinations. The spleen cells from pregnant C57BL/6 (H-2b) mice mated with BALB/c (H-2d) male mice generated less anti-H-2d CTL after in vitro sensitization than those from unpregnant or syngeneically mated C57BL/6 mice. Different allogeneic combinations including the incompatibility at only D region of H-2 or minor histocompatibility loci were effective for downregulating the anti-paternal CTL activity in pregnancy. The downregulation of anti-paternal CTL activity induced by allogeneic pregnancy occurred at day 10 to day 18 of pregnancy, most extensively at day 14. The allogeneic pregnancy also downregulated the allogeneic CTL activities that had been amplified by injecting alloantigens before mating.  相似文献   

12.
Cytotoxic T-lymphocyte (CTL) responses to herpes simplex virus (HSV) polypeptides play an important role in recovery from infection and in preventing latency. We have previously shown that glycoprotein B (gB) is a major target recognized by HSV-specific CTLs in C57BL/6 (H-2b) and BALB/c (H-2d) mice but not in CBA/J (H-2k) mice (L. A. Witmer, K. L. Rosenthal, F. L. Graham, H. M. Friedman, A. Yee, and D. C. Johnson, J. Gen. Virol. 71:387-396, 1990). In this report, we utilize adenovirus vectors expressing gB with various deletions to localize an immunodominant site in gB, recognized by H-2b-restricted anti-HSV CTLs, to a region between residues 462 and 594. Overlapping peptides spanning this region were synthesized and used to further localize the immunodominant site to residues 489 to 515, a region highly conserved in HSV type 1 (HSV-1) and HSV-2 strains. The 11-amino-acid peptide was apparently associated exclusively with the Kb major histocompatibility complex gene product and not the Db gene product. In contrast, H-2d-restricted CTLs recognized an immunodominant site between residues 233 and 379.  相似文献   

13.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

14.
It is well established that cytotoxic T lymphocytes (CTL) specific for the male minor histocompatibility antigen (H-Y) are generated by restimulation in vitro of in vivo primed spleen cells from C57BL/6 (H-2b) female mice with syngeneic male spleen cells. When tested on target cells from H-2 different strains, the male-specific C57BL/6 CTL populations exhibited significant lysis of DBA/2 (H-2d), A (H-2a), but not C3H (H-2k), male and female target cells. In an attempt to document this cross-reactivity further at the clonal level, a sensitive technique of limiting dilution analysis was used to determine the specificity of C57BL/6 individual CTL precursors (CTL-P) reactive against the male antigen. The mean frequency of anti-H-Y CTL-P in spleens of primed female mice was about 1/3500. Between one-third to one-tenth of these CTL-P produced a progeny that cross-reacted with H-2d (allogeneic) female target cells. These findings were confirmed by the analysis of the reactivity pattern exhibited by male-specific CTL clones derived by limiting dilution. Of 99 clones tested, 13 were found to cross-react with female DBA/2 target cells. These results thus indicate that a relatively large proportion (greater than 10%) of H-2b CTL-P directed against the H-Y antigen cross-react with target cells expressing H-2d alloantigens in the absence of H-Y antigen.  相似文献   

15.
H-2b class I-restricted, TNP-specific CTL clones were obtained by limiting dilution cloning of either short term polyclonal CTL lines or spleen cells of TNP-immunized mice directly ex vivo. Sequence analyses of mRNA coding for TCR alpha- and beta-chains of 11 clones derived from CTL lines from individual C57BL/6 mice revealed that all of them expressed unique but clearly nonrandom receptor structures. Five alpha-chains (45%) employed V alpha 10 gene elements, and four of those (36%) were associated with J beta 2.6-expressing beta-chains. The alpha-chains from these four TCR, moreover, contained an acidic amino acid in position 93 of their N or J region-determined sequences. Clones isolated directly from spleen cells carried these types of receptors at lower frequency, 27% V alpha 10 and 19% J beta 2.6, indicating that bulk in vitro cultivation on Ag leads to selection for these particular receptors. However, even in TNP-specific CTL cloned directly ex vivo, V alpha 10 usage was increased about fivefold over that in Ag-independently activated T cells in H-2b mice (4 to 5%). The selection for V alpha 10/J beta 2.6-expressing cells was obtained repeatedly in other TNP-specific CTL lines from C57BL/6 mice but not in FITC-specific CTL from the same strain or in TNP-specific CTL lines from B10.BR (H-2k) or B10.D2 (H-2d) mice. We conclude from this (a) that the selection for V alpha 10/J beta 2.6+ T cells is driven by the complementarity of these receptors to a combination of TNP and MHC epitopes and (b) that predominant receptor structures reflect the existence of a surprisingly limited number of "T cell-relevant" hapten determinants on the surface of covalently TNP-modified cells.  相似文献   

16.
Cytotoxic T lymphocytes (CTLs) are critical for control of respiratory syncytial virus (RSV) infection in humans and mice. To investigate cellular immune responses to infection, it is important to identify major histocompatibility complex (MHC) class I-restricted CTL epitopes. In this study, we identified a new RSV-specific, H-2K(d)-restricted subdominant epitope in the M2 protein, M2(127-135) (amino acids 127 to 135). This finding allowed us to study the frequency of T lymphocytes responding to two H-2K(d)-presented epitopes in the same protein following RSV infection by enzyme-linked immunospot (ELISPOT) and intracellular cytokine assays for both lymphoid and nonlymphoid tissues. For the subdominant epitope, we identified an optimal nine-amino-acid peptide, VYNTVISYI, which contained an H-2K(d) consensus sequence with Y at position 2 and I at position 9. In addition, an MHC class I stabilization assay using TAP-2-deficient RMA-S cells transfected with K(d) or L(d) indicated that the epitope was presented by K(d). The ratios of T lymphocytes during the peak CTL response to RSV infection that were specific for M2(82-90) (dominant) to T lymphocytes specific for M2(127-135) (subdominant) were approximately 3:1 in the spleen and 10:1 in the lung. These ratios were observed consistently in primary or secondary infection by the ELISPOT assay and in secondary infection by MHC/peptide tetramer staining. The number of antigen-specific T lymphocytes dropped in the 6 weeks after infection; however, the proportions of T lymphocytes specific for the immunodominant and subdominant epitopes were maintained to a remarkable degree in a tissue-specific manner. These studies will facilitate investigation of the regulation of immunodominance of RSV-specific CTL epitopes.  相似文献   

17.
We have compared the relatedness of five different strains of lymphocytic choriomeningitis virus (LCMV) as assessed by LCMV-specific cytotoxic T lymphocytes (CTL). Several different mouse strains were injected with each of the five LCMV strains, and the cross-reactivity of virus-specific CTL generated during the acute infection was tested by killing on a panel of target cells infected with the various LCMV strains. We found that the cross-reactivity pattern of LCMV-specific CTL generated in mice of H-2d haplotype (BALB/c WEHI and DBA/2) was strikingly different from that in mice of H-2b haplotype (C57BL/6 and C3H.Sw/Sn), suggesting that the fine specificity of LCMV-specific CTL is a function of the H-2 region. The characteristic cross-reactivity patterns were also observed in (C57BL/6 X DBA/2)F1 mice, demonstrating that the repertoire of the H-2b- and H-2d-restricted LCMV-specific CTL is not changed as a result of complementation by gene products of the other major histocompatibility haplotype. Studies with congenic BALB.B10 and (BALB.B10 X BALB/c)F1 mice firmly established that the characteristic cross-reactivity patterns of LCMV-specific CTL map to the H-2 region and are not influenced by background genes outside the major histocompatibility locus. These results suggest that LCMV determinants seen in the context of H-2d-restricting elements are different from those seen in the context of H-2b-restricting elements. Moreover, our studies show that CTL can be used as probes for dissecting differences among various LCMV strains, but the degree of relatedness between the different LCMV strains is not absolute when measured by CTL recognition. Since the H-2 region regulates the fine specificity of CTL generated during LCMV infection in its natural host, the degree of cross-protective immunity developed during a viral infection apparently depends on the major histocompatibility haplotype. The importance of these findings lies in understanding susceptibility or resistance of various host populations to viral infections and in designing vaccination programs to provide immunity.  相似文献   

18.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

19.
Rich RF  Green WR 《Journal of virology》1999,73(5):3826-3834
C57BL/6 (H-2(b)) mice generate type-specific cytolytic T-lymphocyte (CTL) responses to an immunodominant Kb-restricted epitope, KSPWFTTL located in the membrane-spanning domain of p15TM of AKR/Gross murine leukemia viruses (MuLV). AKR.H-2(b) congenic mice, although carrying the responder H-2(b) major histocompatibility complex (MHC) haplotype, are low responders or nonresponders for AKR/Gross MuLV-specific CTL, apparently due to the presence of inhibitory AKR. H-2(b) cells. Despite their expression of viral antigens and Kb, untreated viable AKR.H-2(b) spleen cells cause dramatic inhibition of the C57BL/6 (B6) antiviral CTL response to in vitro stimulation with AKR/Gross MuLV-induced tumor cells. This inhibition is specific (AKR.H-2(b) modulator spleen cells do not inhibit allogeneic MHC or minor histocompatibility antigen-specific CTL production), dependent on direct contact of AKR.H-2(b) cells in a dose-dependent manner with the responder cell population, and not due to soluble factors. Here, the mechanism of inhibition of the antiviral CTL response is shown to depend on Fas/Fas-ligand interactions, implying an apoptotic effect on B6 responder cells. Although B6.gld (FasL-) responders were as sensitive to inhibition by AKR.H-2(b) modulator cells as were B6 responders, B6.lpr (Fas-) responders were largely insensitive to inhibition, indicating that the responder cells needed to express Fas. A Fas-Ig fusion protein, when added to the in vitro CTL stimulation cultures, relieved the inhibition caused by the AKR.H-2(b) cells if the primed responders were from either B6 or B6.gld mice, indicating that the inhibitory AKR.H-2(b) cells express FasL. Because of the antigen specificity of the inhibition, these results collectively implicate a FasL/Fas interaction mechanism: viral antigen-positive AKR.H-2(b) cells expressing FasL inhibit antiviral T cells ("veto" them) when the AKR.H-2(b) cells are recognized. Consistent with this model, inhibition by AKR.H-2(b) modulator cells was MHC restricted, and resulted in approximately a 10- to 70-fold decrease in the in vitro expansion of pCTL/CTL. Both CD8(+) CTL and CD4(+) Th responder cells were susceptible to inhibition by FasL+ AKR.H-2(b) inhibitory cells as the basis for inhibition. The CTL response in the presence of inhibitory cells could be restored by several cytokines or agents that have been shown by others to interfere with activation-induced cell death (e.g. , interleukin-2 [IL-2], IL-15, transforming growth factor beta, lipopolysaccharide, 9-cis-retinoic acid) but not others (e.g., tumor necrosis factor alpha). These results raise the possibility that this type of inhibitory mechanism is generalized as a common strategy for retrovirus infected cells to evade immune T-cell recognition.  相似文献   

20.
C57BL/6 mice mount a cytotoxic T-lymphocyte (CTL) response against the Daniel's strain of Theiler's murine encephalomyelitis virus (TMEV) 7 days after infection and do not develop persistent infection or the demyelinating syndrome similar to multiple sclerosis seen in susceptible mice. The TMEV capsid peptide VP2121-130 sensitizes H-2Db+ target cells for killing by central-nervous-system-infiltrating lymphocytes (CNS-ILs) isolated from C57BL/6 mice infected intracranially. Db:VP2121-130 peptide tetramers were used to stain CD8(+) CNS-ILs, revealing that 50 to 63% of these cells bear receptors specific for VP2121-130 presented in the context of Db. No T cells bearing this specificity were found in the cervical lymph nodes or spleens of TMEV-infected mice. H-2(b) mice lacking CD4, class II, gamma interferon, or CD28 expression are susceptible to persistent virus infection but surprisingly still generate high frequencies of CD8(+), Db:VP2121-130-specific T cells. However, CD4-negative mice generate a lower frequency of Db:VP2121-130-specific T cells than do class II negative or normal H-2(b) animals. Resistant tumor necrosis factor alpha receptor I knockout mice also generate a high frequency of CD8(+) CNS-ILs specific for Db:VP2121-130. Furthermore, normally susceptible FVB mice that express a Db transgene generate Db:VP2121-130-specific CD8(+) CNS-ILs at a frequency similar to that of C57BL/6 mice. These results demonstrate that VP2121-130 presented in the context of Db is an immunodominant epitope in TMEV infection and that the frequency of the VP2121-130-specific CTLs appears to be independent of several key inflammatory mediators and genetic background but is regulated in part by the expression of CD4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号