首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed‐back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed‐backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed‐backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population‐wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex‐specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding.  相似文献   

2.
3.
Evolutionary theory predicts an influence of mating group size on sex allocation in simultaneous hermaphrodites. We experimentally manipulated the social situation during reproduction in a simultaneous hermaphrodite parasite, the tapeworm Schistocephalus solidus, by placing worms as singles, pairs or triplets into an in vitro system that replaces the final host. We then determined the reproductive allocation patterns after 24 h (i.e. before the start of egg release) and after 72 h (i.e. around the peak of egg release rate) using stereology. After 24 h, sex allocation strongly depended on worm volume (which is determined in the second intermediate host), but was not significantly affected by the social situation experienced during reproduction. After 72 h, worms in groups had less vesicular sperm (i.e. sperm to be used in future inseminations) than singles. They also stored significantly more received sperm in their seminal receptacles than singles, suggesting that more sperm had been transferred in groups. Moreover, worms in triplets stored significantly more received sperm than worms in pairs, suggesting that they either mated more often and/or transferred more sperm per mating. This suggests a behavioural response to the increased risk of sperm competition in triplets. We further discuss the relative importance of sex allocation decisions at different life‐history stages.  相似文献   

4.
5.
This study documents unexpectedly low levels of intra and interpopulation genetic diversity in Kryptolebias ocellatus, an androdioecious and predominantly self-fertilizing killifish from south-eastern Brazil. This finding generally is inconsistent with the established opinion that the K. ocellatus and K. marmoratus clade originated in this geographic region and later dispersed northward into the Caribbean.  相似文献   

6.
The ability to self in the absence of pollinators, i.e. reproductive assurance, and the detrimental consequences of inbreeding, i.e. inbreeding depression, are central factors influencing plant mating system evolution. The purpose of this study was to quantify whether self-fertility and inbreeding depression are related to levels of inbreeding in four Cyclamen species, namely C. balearicum (mean Fis = 0.930), C. creticum (mean Fis = 0.748), C. repandum (mean Fis = 0.658) and C. hederifolium (mean Fis = 0.329). C. balearicum showed a markedly greater capacity to autonomously self-fertilize than the three other species, which may have favoured inbreeding in this species. Levels of inbreeding depression were highest in C. creticum and C. hederifolium at the fruit maturation (δ = 0.18 and 0.20, respectively) and seed number (δ = 0.32 and 0.30, respectively) stages, and for C. repandum at the seed weight stage (δ = 0.23). Although C. balearicum showed inbreeding depression on seed germination (δ = 0.45), this may be an artefact of the generally low levels of seed germination in the experiment. Overall, we observed only limited evidence for the predicted negative relation between inbreeding coefficients and levels of inbreeding since C. creticum had high levels of inbreeding and inbreeding depression. Other factors may thus influence the relationship between inbreeding and inbreeding depression in these species.  相似文献   

7.
The clam shrimp Eulimnadia texana has a rare mating system known as androdioecy, in which males and hermaphrodites cooccur butthere are no pure females. In this species, reproduction takesplace by outcrossing between males and hermaphrodites, or byselfing within a hermaphrodite; this system provides a uniqueopportunity to examine the adaptive significance of out-crossingand selfing in animals. Our study examined mating behavior in hermaphrodites and males from two populations to understandthe propensity of these shrimp to mate and to estimate a parameterof a model developed by Otto et al. (American Naturalist 141:329-337),which predicts the conditions for stability of the mixed matingsystem in E. texana. Here we present evidence that mating frequencyis environmentally sensitive, with greater numbers of encountersand matings per male when males are rare and in younger males.However, the effects of shrimp density, relative male frequency,and shrimp age interact in a complex way to determine malemating success. Overall, mating frequency was determined bya combination of encounter rates between the sexes and theproportion of encounters resulting in mating. The mating rateswere then used to estimate one of four parameters of the Ottoet al. model, and these estimates were combined with previousestimates of the other three parameters to examine the fitof the predicted to the observed sex ratios in the two populations.  相似文献   

8.
Abstract. For simultaneous hermaphrodites, a male-to-female shift in sex allocation with growth, and weak sexual selection on the male function, is predicted by many theories, although empirical data for both predictions are insufficient for internally fertilizing hermaphrodites with nonreciprocal mating. To address these issues, I studied mating and egg-laying behavior of the sea hare, Aplysia kurodai (Gastropoda: Opisthobranchia) in the laboratory. Both frequency and duration of egg laying increased with body weight, indicating that fecundity increased with weight. On the other hand, frequency and duration of mating as males did not increase with body weight, suggesting that sperm usage was independent of weight. Therefore, sex allocation shifted from male to female functions with growth. The lack of a relationship between body weight and mating activities as males also suggests that there was no "female" choice for large partners. However, the frequency of mating as females increased with body weight, suggesting "male" choice for large partners. This "male" choice is further supported by the presence of size-assortative mating and a longer duration of mating when the female partner was large. In addition, the variance in mating frequency as females was larger than that as males. As a whole, the mating behavior in A. kurodai can be summarized as choosy as males and unchoosy as females, the opposite of the patterns known in most gonochoric and hermaphroditic animals.  相似文献   

9.
In hermaphrodites, traits that influence the selfing rate can coevolve with inbreeding depression, leading to the emergence of evolutionary syndromes. Theory predicts a negative correlation between inbreeding depression and selfing rate across species. This prediction has only been examined and validated in vascular plants. Furthermore, selfing rates are often influenced by environmental conditions (e.g., lack of mates or pollinators), and species are predicted to evolve mechanisms to buffer this variation. We extend previous studies of mating-system syndromes in two ways. First, we assembled a new dataset on Basommatophoran snails (17 species, including new data on 12 species). Second, we measured how species responded to variation in mate availability. Specifically, we quantified the waiting time before selfing (i.e., how long the onset of reproduction is delayed in the absence of mates). Selfing rates were negatively correlated with both inbreeding depression and the waiting time. Species with stronger inbreeding depression exhibited longer waiting times. These patterns obtained on Basommatophorans still hold when including eight other hermaphroditic animals. Our results support the hypothesis that selection drives the evolution of mating-system syndromes in animals. The reaction norm of selfing rates to mate availability is a key target of natural selection in this context.  相似文献   

10.
Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.  相似文献   

11.
Geum urbanum and Geum rivale are two widely hybridizing perennial herbs. Estimation of the breeding systems of these taxa using nuclear microsatellite markers scored in mother–progeny arrays demonstrated that, in pure populations, G. urbanum is predominantly selfing (outcrossing rate, t = 0.058 to 0.177), whereas G. rivale is predominantly outcrossing (t = 0.686–0.775). Theory suggests that hybridization between inbreeding and outcrossing species can potentially generate novel inbreeding lineages. However, the establishment of such lineages may be restricted either by self‐incompatibility loci or deleterious recessive alleles derived from the outcrossing parent. To assess the likelihood that hybridization between G. urbanum and G. rivale will generate novel inbreeding lineages, self‐incompatibility and inbreeding depression were investigated in the two taxa. Seed set in the absence of pollinators, and after controlled self‐ and cross‐pollination, was measured to study self‐incompatibility. Inbreeding depression was measured by estimating the relative fitness of offspring from controlled self‐and cross‐pollinations. Geum urbanum was fully self‐compatible [self‐compatibility index (SCI) = 1] and bagged flowers showed full seed set. By contrast, only 3% of bagged flowers set seed in G. rivale and controlled self‐pollinations showed a 60–80% reduction in seed set compared to controlled outcross pollinations (SCI = 0.28). There was no evidence for inbreeding depression in G. urbanum, although significant, albeit low levels of inbreeding depression were detected in one of two G. rivale populations (δ = 0.33). The implication of these results is that if genetic material from G. rivale was incorporated into a hybrid with a selfing morphology, the establishment of this selfing lineage could be compromised by self‐incompatibility and inbreeding depression. The wider implications of these results for evolution in hybrid swarms between G. urbanum and G. rivale are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 977–990.  相似文献   

12.
The variation and evolution of reproductive traits in island plants have much attention from conservation and evolutionary biologists. However, plants on islands in the Mediterranean region have very little attention. In the present study, we examine the floral biology and mating system of Cyclamen creticum , a diploid perennial herb endemic to Crete and Karpathos. Our purpose is to quantify (1) variation and covariation of floral traits related to the mating system, (2) the ability of the species to self in the absence of pollinators and its relative performance on selfing and outcrossing and (3) generic diversity within and among populations. Pollen/ovule ratios were indicative of a xenogamous species. A controlled pollination experiment showed that the species is self-compatible but is unable to set seed, in the absence of pollinators, probably due to stigma-anther separation. A multiplicative estimate of inbreeding depression based on fruit maturation, seed number and percentage seed germination gave δ= 0.38 Population genetic diversity was high, 54.76% polymorphic loci, a mean of 1.78 alleles per locus and a mean observed heterozygosity of 0.053. F -statistics nevertheless indicated high inbreeding rates (mean F is= 0.748) in natural populations, and low levels of population differentiation (mean Fis= 0.168). C. creticum thus appears to have a mixed-mating system with high levels of (pollinator) mediated inbreeding (either by facilitated selfing, geitonogamy or biparental inbreeding) in natural populations.  相似文献   

13.
Mating among closely‐related individuals in small and isolated plant populations may result in reduced vigour of the inbred offspring, i.e. inbreeding depression, especially in naturally outbreeding plants. Occurrence of inbreeding and inbreeding depression was studied in Saintpaulia ionantha ssp. grotei, a threatened endemic plant species with a narrow ecological amplitude from the East Usambara Mountains. The level of inbreeding (measured as the fixation index, F) was investigated in twelve populations by analyzing variation at one microsatellite marker locus. The effect of one generation of selfing and outcrossing on the progeny fitness was studied by controlled crosses in two small patches that differ in the level isolation. The fixation index (F) across the populations was on the average 0.21 and varied among the populations from substantial inbreeding (F = 0.58) to surplus heterozygosity (F = −0.29). High inbreeding depression (δ) was observed at early and late stages of the life‐cycle. The isolated patch exhibited lower inbreeding depression than did the non‐isolated patch. The results of this study suggest that inbreeding and subsequent inbreeding depression are potential threats to the survival of Saintpaulia populations.  相似文献   

14.
Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre‐ and post‐copulatory sexual selection. For example, local sperm competition (LSC) – the competition between related sperm for the fertilization of a partner's ova – occurs in small mating groups and can favour a female‐biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano – by sampling worms from either the highest or lowest quartile of the testis investment distribution – and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green‐fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano.  相似文献   

15.
Sex allocation theory predicts that the optimal sexual resource allocation of simultaneous hermaphrodites is affected by mating group size (MGS). Although the original concept assumes that the MGS does not differ between male and female functions, the MGS in the male function (MGSm; i.e., the number of sperm recipients the focal individual can deliver its sperm to plus one) and that in the female function (MGSf; the number of sperm donors plus one) do not always coincide and may differently affect the optimal sex allocation. Moreover, reproductive costs can be split into “variable” (e.g., sperm and eggs) and “fixed” (e.g., genitalia) costs, but these have been seldom distinguished in empirical studies. We examined the effects of MGSm and MGSf on the fixed and variable reproductive investments in the sessilian barnacle Balanus rostratus. The results showed that MGSm had a positive effect on sex allocation, whereas MGSf had a nearly significant negative effect. Moreover, the “fixed” cost varied with body size and both aspects of MGS. We argue that the two aspects of MGS should be distinguished for organisms with unilateral mating.  相似文献   

16.
Although species with both male and female sexual functionsare often dichotomized into simultaneous and sequential hermaphrodites,many simultaneous hermaphrodites also exhibit sequential changesin sex allocation. In a field experiment using one such species,the gobiid fish, Lythrypnus dalli, female-biased individualsreallocated to male function in relation to their relative bodysize: consistent with the sizeadvantage hypothesis, large femaleswere more likely to reallocate and large fish had the highestspawningrates. Individuals, despite internal allocation to bothsexual functions, adopted only one behavioral gender. Behavioralmales had higher reproductive rates than behavioral females,and laboratory experiments showed that females preferred tomate with large males. Behavioral males grew more rapidly anddid notdiffer from behavioral females in survivorship. In addition,individuals who adopted male behavior but did not receive eggsin their nests maintained high levels of female tissue, whereasmales that received eggs did not. Laboratory experiments showedthat, unlike most hermaphroditic animals, L. dalli canchangeallocation either from ‘female’ to ‘male’or from ‘male’ to ‘female’. Thus, L.dalli shares haracteristics of both sequential and simultaneoushermaphrodites. Simultaneous hermaphroditism maybe maintained,in this species, to facilitate rapid sex change from femaleto male and to retain flexibility o that unsuccessful malescan revert to reproduction as females.  相似文献   

17.

Background and Aims

How and why plants evolve to become selfing is a long-standing evolutionary puzzle. The transition from outcrossing to highly selfing is less well understood in self-compatible (SC) mixed-mating (MM) species where potentially subtle interactions between floral phenotypes and the environment are at play. We examined floral morphological and developmental traits across an entire SC MM genus, Collinsia, to determine which, if any, predict potential autonomous selfing ability when pollinators are absent (AS) and actual selfing rates in the wild, sm, and to best define the selfing syndrome for this clade.

Methods

Using polymorphic microsatellite markers, we obtained 30 population-level estimates of sm across 19 Collinsia taxa. Species grand means for the timing of herkogamy (stigma–anther contact) and dichogamy (stigmatic receptivity, SR), AS, floral size, longevity and their genetic correlations were quantified for 22 taxa.

Key Results

Species fell into discrete selfing and outcrossing groups based on floral traits. Loss of dichogamy defines Collinsia''s selfing syndrome. Floral size, longevity and herkogamy also differ significantly between these groups. Most taxa have high AS rates (>80 %), but AS is uncorrelated with any measured trait. In contrast, sm is significantly correlated only with SR. High variance in sm was observed in the two groups.

Conclusions

Collinsia species exhibit clear morphological and developmental traits diagnostic of ‘selfing’ or ‘outcrossing’ groups. However, many species in both the ‘selfing’ and the ‘outcrossing’ groups were MM, pointing to the critical influence of the pollination environment, the timing of AS and outcross pollen prepotency on sm. Flower size is a poor predictor of Collinsia species'' field selfing rates and this result may apply to many SC species. Assessment of the variation in the pollination environment, which can increase selfing rates in more ‘outcrossing’ species but can also decrease selfing rates in more ‘selfing’ species, is critical to understanding mating system evolution of SC MM taxa.  相似文献   

18.
19.
Little is known about the breeding systems of perennial Lupinus species. We provide information about the breeding system of the perennial yellow bush lupine, Lupinus arboreus, specifically determining self-compatibility, outcrossing rate, and level of inbreeding depression. Flowers are self-compatible, but autonomous self-fertilization rarely occurs; thus selfed seed are a product of facilitated selfing. Based on four isozyme loci from 34 maternal progeny arrays of seeds we estimated an outcrossing rate of 0.78. However, when we accounted for differential maturation of selfed seeds, the outcrossing rate at fertilization was lower, ~0.64. Fitness and inbreeding depression of 11 selfed and outcrossed families were measured at four stages: seed maturation, seedling emergence, seedling survivorship, and growth at 12 wk. Cumulative inbreeding depression across all four life stages averaged 0.59, although variation existed between families for the magnitude of inbreeding depression. Inbreeding depression was not manifest uniformly across all four life stages. Outcrossed flowers produced twice as many seeds as selfed flowers, but the mean performance of selfed and outcrossed progeny was not different for emergence, seedling survivorship, and size at 12 wk. Counter to assumptions about this species, L. arboreus is both self-compatible and outcrosses ~78% of the time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号