首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthrax toxin complex consists of three different molecules, the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63-kDa N-terminal part of PA, PA(63), forms a heptameric channel that inserts at low pH in endosomal membranes and that is necessary to translocate EF and LF in the cytosol of the target cells. EF is an intracellular active enzyme, which is a calmodulin-dependent adenylate cyclase (89 kDa) that causes a dramatic increase of intracellular cAMP level. Here, the binding of full-length EF on heptameric PA(63) channels was studied in experiments with artificial lipid bilayer membranes. Full-length EF blocks the PA(63) channels in a dose, temperature, voltage, and ionic strength-dependent way with half-saturation constants in the nanomolar concentration range. EF only blocked the PA(63) channels when PA(63) and EF were added to the same side of the membrane, the cis side. Decreasing ionic strength and increasing transmembrane voltage at the cis side of the membranes resulted in a strong decrease of the half-saturation constant for EF binding. This result suggests that ion-ion interactions are involved in EF binding to the PA heptamer. Increasing temperature resulted in increasing half-saturation constants for EF binding to the PA(63) channels. The binding characteristics of EF to the PA(63) channels are compared with those of LF binding. The comparison exhibits similarities but also remarkable differences between the bindings of both toxins to the PA(63) channel.  相似文献   

2.
Anthrax protective antigen (PA, 83 kDa), a pore-forming protein, upon protease activation to 63 kDa (PA(63)), translocates lethal factor (LF) and edema factor (EF) from endosomes into the cytosol of the cell. The relatively small size of the heptameric PA(63) pore (approximately 12 angstroms) raises questions as to how large molecules such as LF and EF can move through the pore. In addition, the reported high binding affinity between PA and EF/LF suggests that EF/LF may not dissociate but remain complexed with activated PA(63). In this study, we found that purified (PA(63))(7)-LF complex exhibited biological and functional activities similar to the free LF. Purified LF complexed with PA(63) heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage cells. Electrophysiological studies of the complex showed strong rectification of the ionic current at positive voltages, an effect similar to that observed if LF is added to the channels formed by heptameric PA(63) pore. Complexes of (PA(63))(7)-LF found in the plasma of infected animals showed functional activity. Identifying active complex in the blood of infected animals has important implications for therapeutic design, especially those directed against PA and LF. Our studies suggest that the individual toxin components and the complex must be considered as critical targets for anthrax therapeutics.  相似文献   

3.
Anthrax is caused by Gram positive bacterium Bacillus anthracis. Pathogenesis is result of production of three protein components, protective antigen (PA), lethal factor (LF), and edema factor (EF). PA in combination with LF (lethal toxin) is lethal to animals, while PA in combination with EF (edema toxin), causes edema. PA, LF, and EF are very thermolabile. Differential scanning calorimetry (DSC) was used to unravel the energetics of LF denaturation as a function of pH ranging from 7.8 to 5.5. Transition temperature (T(m)) of LF was found to be approximately equal to 42 degrees C and onset of denaturation occurs at approximately equal to 30 degrees C. The ratio of calorimetric to van't Hoff's enthalpy was nearly equal to unity at pH 7.0, indicative of presence of single structural domain in LF at pH 7.0, unlike PA which has been structurally observed to consist of 4 domains. It was found by cytotoxicity studies using J774A.1 macrophage like cells that LF was most stable at pH approximately 6.5. This paper reports for the first time the denaturation of LF at different pH values at 37 degrees C and tries to establish a correlation between denaturation and loss of LF activity at different pH values.  相似文献   

4.
The three separate proteins that make up anthrax toxin-protective antigen (PA), edema factor (EF) and lethal factor (LF) act in binary combinations to produce two distinct reactions in experimental animals: edema (PA+EF) and death (PA+LF). PA is believed to interact with a membrane receptor and, after proteolytic processing, to mediate endocytosis and subsequent translocation of EF or LF into the cytosol. Residues W346, M350, and L352 in loop 3 of domain 2 have been implicated to induce a conformational change when the pH is lowered from 7.4 to 6.5. Modification of the residues Trp (346), Met (350), and Leu (352) to alanine individually and all the three residues together to alanine residues resulted in the loss of cytotoxic activity in combination with LF. The mutant proteins were able to bind to the cell surface receptor, become cleaved by trypsin, bind LF, and oligomerize. These residues might play an important role in the membrane insertion of PA and/or translocation of LF/EF into the cytosol.  相似文献   

5.
Effects of the three-component toxin of Bacillus anthracis on chemotaxis of human polymorphonuclear leukocytes (PMN) were investigated in an effort to determine the basis of the reported antiphagocytic effect of the toxin. The three toxin components, edema factor (EF), protective antigen (PA), and lethal factor (LF), were tested alone and in various combinations for their effect on PMN chemotaxis under agarose to formyl peptides and zymosan-activated serum. No component was active alone; combinations of EF + PA, LF + PA, and EF + LF + PA markedly stimulated chemotaxis (directed migration), but had little or no effect on unstimulated random migration. The toxin components were not themselves chemoattractants. EF in combination with PA had previously been identified as an adenylate cyclase in Chinese hamster ovary (CHO) cells. We found that EF + PA produced detectable cyclic adenosine 3'-5'monophosphate (cAMP) in PMN, but the level of cAMP was less than 1% of that produced in CHO cells by EF + PA, and in PMN by other bacterial adenylate cyclases. LF + PA (which stimulated chemotaxis to an equivalent extent) had no effect on cAMP levels. Thus, the enhancement of chemotaxis by anthrax toxin (at least by LF + PA) does not seem to be related to adenylate cyclase activity.  相似文献   

6.
Anthrax toxin consists of three different molecules: the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63 kDa C-terminal part of PA, PA(63), forms heptameric channels that insert in endosomal membranes at low pH, necessary to translocate EF and LF into the cytosol of target cells. In many studies, about 30 kDa N-terminal fragments of the enzymatic components EF (254 amino acids) and LF (268 amino acids) were used to study their interaction with PA(63)-channels. Here, in experiments with artificial lipid bilayer membranes, EF(N) and LF(N) show block of PA(63)-channels in a dose, voltage and ionic strength dependent way with high affinity. However, when compared to their full-length counterparts EF and LF, they exhibit considerably lower binding affinity. Decreasing ionic strength and, in the case of EF(N), increasing transmembrane voltage at the cis side of the membranes, resulted in a strong decrease of half saturation constants. Our results demonstrate similarities but also remarkable differences between the binding kinetics of both truncated and full-length effectors to the PA(63)-channel.  相似文献   

7.
The edema factor (EF) and lethal factor (LF) components of anthrax toxin require anthrax protective antigen (PA) for binding and entry into mammalian cells. After internalization by receptor-mediated endocytosis, PA facilitates the translocation of EF and LF across the membrane of an acidic intracellular compartment. To characterize the translocation process, we generated chimeric proteins composed of the PA recognition domain of LF (LFN; residues 1–255) fused to either the amino-terminus or the carboxy-terminus of the catalytic chain of diphtheria toxin (DTA). The purified fusion proteins retained ADP-ribosyltransferase activity and reacted with anti-sera against LF and diphtheria toxin. Both fusion proteins strongly inhibited protein synthesis in CHO-K1 cells in the presence of PA, but not in its absence, and they showed similar levels of activity. This activity could be inhibited by adding LF or the LFN fragment (which blocked the interaction of the fusion proteins with PA), by adding inhibitors of endo-some acidification known to block entry of EF and LF into cells, or by introducing mutations that attenuated the ADP-ribosylation activity of the DTA moiety. The results demonstrate that LFN fused to either the amino-terminus or the carboxy-terminus of a heterologous protein retains its ability to complement PA in mediating translocation of the protein to the cytoplasm. Besides its importance in understanding translocation, this finding provides the basis for constructing a translocation vector that mediates entry of a variety of heterologous proteins, which may require a free amino- or carboxy-terminus for biological activity, into the cytoplasm of mammalian cells.  相似文献   

8.
The components of the Bacillus anthracis exotoxins, protective antigen (PA), lethal factor (LF), and edema factor (EF), from 24 isolates were separated by isoelectric focusing gel electrophoresis and detected by Western blot with monoclonal antibodies. Only two isoforms each were observed for PA and EF. Four isoforms were identified for LF. The biological activities of both lethal toxin and edema toxin were measured by using in vitro cell-based assays. This study provides another method of characterizing various isolates of B. anthracis by determining the isoelectric points of the exotoxin components and may be useful in the development of protective vaccines against B. anthracis infection.  相似文献   

9.
The protective antigen (PA) component of anthrax toxin translocates the catalytic moieties lethal factor (LF) and edema factor (EF) into the cytosol. The proteolytically activated 63 kDa form of PA (PA63) has the ability to oligomerize and bind LF/EF. PA has four distinct domains performing specialized functions; whereas the function of domains I, II and IV has been well characterized, domain III has no known role in the biological activity of PA. Here we report the role of amino acid residues lining an exposed hydrophobic patch of domain III in the biological activity of PA. The residues Phe552, Phe554, lIe562, Leu566 and lle574 were individually substituted with alanine and the effect was studied. All mutant PA proteins except Phe552Ala were equally active as wild-type PA in exhibiting a toxic phenotype to J774A.1 cells in the presence of LF. Substitution of Ala for Phe552 reduced the ability of PA to intoxicate cells by more than 250-fold. However, Phe552Ala was equally active in receptor binding and susceptibility to trypsin and chymotrypsin as wild-type PA, the activities that have been shown to be essential for the biological activity of PA. This mutated PA protein had a decreased ability to bind LF, oligomerize on cells and to induce release of 86Rb+ from Chinese hamster ovary cells. These results suggest that the residue Phe552 in PA plays an important role in LF binding and oligomerization. Our study provides a basis for further exploration of the biological significance of domain III of PA.  相似文献   

10.
Proteolytic activation of the protective antigen (PA) component of anthrax toxin allows it to self-associate into a ring-shaped homoheptamer, [PA(63)](7), which can bind the enzymatic components lethal factor (LF) and edema factor (EF). [PA(63)](7) is a pore-precursor (prepore), and under the low-pH conditions of the endosome, it forms a transmembrane pore that allows LF and EF to enter the cytosol. PA was labeled with donor and acceptor fluorescent dyes, and F?rster resonance energy transfer was used to measure the assembly and disassembly kinetics of the prepore complex in solution. The dissociation rate constant for [PA(63)](7) was 1 x 10(-)(6) s(-)(1) (t(1/2) approximately 7 days). In contrast, a ternary complex containing the PA-binding domain of LF (LF(N)) bound to a PA(63) dimer composed of two nonoligomerizing mutants dissociated rapidly (t(1/2) approximately 1 min). Thus, the substantial decrease in the rate of disassembly of [PA(63)](7) relative to the ternary complex is due to the cooperative interactions among neighboring subunits in the heptameric ring. Low concentrations of LF(N) promoted assembly of the prepore from proteolytically activated PA, whereas high concentrations inhibited assembly of both the prepore and the ternary complex. A self-assembly scheme of anthrax toxin complexes is proposed.  相似文献   

11.
重组炭疽水肿因子的表达与生物活性分析   总被引:1,自引:0,他引:1  
炭疽毒素包括3种蛋白因子,即保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。EF是钙调蛋白依耐的腺苷酸环化酶,可使细胞cAMP浓度升高,导致宿主防御能力下降。为深入研究炭疽毒素的作用机理,构建了原核表达质粒,在大肠杆菌中表达出重组EF(rEF)。经鉴定,rEF以可溶形式表达于细菌胞质中。经过金属螯和层析、阳离子交换层析和凝胶层析,每升诱导培养物可获得约5mg 重组蛋白。用重组蛋白免疫家兔获得了兔多抗,能够在细胞试验中中和rEF,体外细胞试验显示rEF具有很好的生物活性,在J774A.1和CHO细胞试验中,能与LF共同竞争和PA的结合位点,相互抑制。上述工作为深入研究炭疽毒素的作用机理,开发针对EF的毒素抑制剂打下基础  相似文献   

12.
Anthrax is caused by the gram-positive spore-forming bacterium Bacillus anthracis. The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF). PA facilitates the translocation of LF and EF into the cytosol of mammalian cells. LF is thought to be a zinc-dependent metalloprotease that results in death. EF is a calmodulin- and calcium-dependent adenylate cyclase that causes edema upon entrance into the cytosol by elevating the cAMP levels in cells. Previous efforts to produce recombinant EF (rEF) in Escherichia coli yielded only 2.5 mg of rEF per liter of culture. In this work, we produced soluble rEF in large quantities in both the periplasm and cytoplasm of E. coli from shake flasks and fermentors. The rEF protein was purified by standard chromatography and yielded >97% pure, biologically active rEF. Yields of purified rEF from medium cell density fermentations resulted in up to 2.38 g/L of highly pure, biologically active rEF protein. These results exhibit the ability to generate gram quantities of active rEF from E. coli.  相似文献   

13.
Anthrax toxin produced by Bacillus anthracis is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF into the cytosol. EF is a calmodulin-dependent adenylate cyclase that causes edema whereas LF is a zinc metalloprotease and leads to necrosis of macrophages. It is also important to note that the exact mechanism of LF action is still unclear. With this view in mind, in the present study, we investigated a proteome wide effect of anthrax lethal toxin (LT) on mouse macrophage cells (J774A.1). Proteome analysis of LT-treated and control macrophages revealed 41 differentially expressed protein spots, among which phosphoglycerate kinase I, enolase I, ATP synthase (beta subunit), tubulin beta2, gamma-actin, Hsp70, 14-3-3 zeta protein and tyrosine/tryptophan-3-monooxygenase were found to be down-regulated, while T-complex protein-1, vimentin, ERp29 and GRP78 were found to be up-regulated in the LT-treated macrophages. Analysis of up- and down-regulated proteins revealed that primarily the stress response and energy generation proteins play an important role in the LT-mediated macrophage cell death.  相似文献   

14.
The anthrax toxin is an AB-type bacterium toxin composed of the protective antigen (PA) as the cell-binding B component, and the lethal factor (LF) and edema toxin (EF) as the catalytic A components. The PA component is a key factor in anthrax-related research and recombinant PA can be produced in general in Escherichia coli. However, such recombinant PA always forms inclusion bodies in the cytoplasm of E. coli, making difficult the procedure of its purification. In this study, we found that the solubility of recombinant PA was dramatically enhanced by fusion with glutathione S-transferase (GST) and an induction of its expression at 28°C. The PA was purified to high homogeneity and a yield of 3 mg protein was obtained from 1 l culture by an affinity-chromatography approach. Moreover, we expressed and purified three PA mutants, I394C, A396C, and N435C, which were impaired in expression in previous study. Among them, a novel mutant N435C which conferred dominant-negative inhibitory activity on PA was identified. This new mutant may be useful in designing new antitoxin for anthrax prophylaxis and therapy.  相似文献   

15.
The two enzymatic components of anthrax toxin, lethal factor (LF) and edema factor (EF), are transported to the cytosol of mammalian cells by the third component, protective antigen (PA). A heptameric form of PA binds LF and/or EF and, under the acidic conditions encountered in endosomes, generates a membrane-spanning pore that is thought to serve as a passageway for these enzymes to enter the cytosol. The pore contains a 14-stranded transmembrane beta-barrel that is too narrow to accommodate a fully folded protein, necessitating that LF and EF unfold, at least partly, in order to pass. Here, we describe the pH-dependence of the unfolding of LF(N) and EF(N), the 30kDa N-terminal PA-binding domains, and minimal translocatable units, of LF and EF. Equilibrium chemical denaturation studies using fluorescence and circular dichroism spectroscopy show that each protein unfolds via a four-state mechanism: N<-->I<-->J<-->U. The acid-induced N-->I transition occurs within the pH range of the endosome (pH 5-6). The I state predominates at lower pH values, and the J and U states are populated significantly only in the presence of denaturant. The I state is compact and has characteristics of a molten globule, as shown by its retention of significant secondary structure and its ability to bind an apolar fluorophore. The N-->I transition leads to an overall 60% increase in buried surface area exposure. The J state is expanded significantly and has diminished secondary structure content. We analyze the different protonation states of LF(N) and EF(N) in terms of a linked equilibrium proton binding model and discuss the implications of our findings for the mechanism of acidic pH-induced translocation of anthrax toxin. Finally, analysis of the structure of the transmembrane beta-barrel of PA shows that it can accommodate alpha-helix, and we suggest that the steric constraints and composition of the lumen may promote alpha-helix formation.  相似文献   

16.
Anthrax toxin: a tripartite lethal combination   总被引:12,自引:0,他引:12  
Anthrax is a severe bacterial infection that occurs when Bacillus anthracis spores gain access into the body and germinate in macrophages, causing septicemia and toxemia. Anthrax toxin is a binary A-B toxin composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA mediates the entry of either LF or EF into the cytosol of host cells. LF is a zinc metalloprotease that inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defences. Inhibitors targeting different steps of toxin activity have recently been developed. Anthrax toxin has also been exploited as a therapeutic agent against cancer.  相似文献   

17.
The anthrax toxin complex consists of three different molecules, protective antigen (PA), lethal factor (LF), and edema factor (EF). The activated form of PA, PA(63), forms heptamers that insert at low pH in biological membranes forming ion channels and that are necessary to translocate EF and LF in the cell cytosol. LF and EF are intracellular active enzymes that inhibit the host immune system promoting bacterial outgrowth. Here, PA(63) was reconstituted into artificial lipid bilayer membranes and formed ion-permeable channels. The heptameric PA(63) channel contains a binding site for LF on the cis side of the channel. Full-size LF was found to block the PA(63) channel in a dose- and ionic-strength-dependent way with half-saturation constants in the nanomolar concentration range. The binding curves suggest a 1:1 relationship between (PA(63))(7) and bound LF that blocks the channel. The presence of a His(6) tag at the N-terminal end of LF strongly increases the affinity of LF toward the PA(63) channel, indicating that the interaction between LF and the PA(63) channel occurs at the N terminus of the enzyme. The LF-mediated block of the PA(63)-induced membrane conductance is highly asymmetric with respect to the sign of the applied transmembrane potential. The result suggested that the PA(63) heptamers contain a high-affinity binding site for LF inside domain 1 or the channel vestibule and that the binding is ionic-strength-dependent.  相似文献   

18.
The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy—the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-Å crystal structure of the PA octamer. The octamer comprises ∼ 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.  相似文献   

19.
The anthrax toxin consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA mediates the entry of LF and EF to the cytosol where they exert their effects. Although PA is the major component of the vaccines against anthrax, LF has also been found to play an important role in enhancing protective immunity. We have developed an osmolyte-inducible LF expression system. The protein expression system contributed no additional amino acids to the recombinant LF making it suitable for the human vaccine trials.  相似文献   

20.
The lethal factor (LF) and edema factor (EF) components of anthrax toxin are toxic to animal cells only if internalized by interaction with the protective antigen (PA) component. PA binds to a cell surface receptor and is proteolytically cleaved to expose a binding site for LF and EF. To study how LF and EF are internalized and trafficked within cells, LF was fused to the translocation and ADP-ribosylation domains (domains II and III, respectively) of Pseudomonas exotoxin A. LF fusion proteins containing Pseudomonas exotoxin A domains II and III were less toxic than those containing only domain III. Fusion proteins with a functional endoplasmic reticulum retention sequence, REDLK, at the carboxyl terminus of domain III were less toxic than those with a nonfunctional sequence, LDER. The most potent fusion protein, FP33, had an EC50 = 2 pM on Chinese hamster ovary cells, exceeding that of native Pseudomonas exotoxin A (EC50 = 420 pM). Toxicity of all the fusion proteins required the presence of PA and was blocked by monensin. These data suggest that LF and LF fusion proteins are efficiently translocated from acidified endosomes directly to the cytosol without trafficking through other organelles, as is required for Pseudomonas exotoxin A. This system provides a potential vehicle for importing diverse proteins into the cytosol of mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号