首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Targeting Induced Local Lesions in Genomes (TILLING) is a high throughput reverse genetics tool which detects mismatches (single point mutations or small indels) in large number of individuals of mutagenized populations. Currently, TILLING is intensively used for genomics assisted molecular breeding of several crop plants for desired traits. Most commonly used platform for mutation detection is Li-COR DNA Analyzer, where PCR amplified products treated with single strand mismatch specific nuclease are resolved on denaturing gels. The molecular size of any cut product can be easily estimated by comparing with IR dye labeled markers of known sizes. Similar fluorescent dye labeled size markers are also used for several genotyping experiments. Currently, commercially available size standards are expensive and are restricted up to only 700 bp which renders estimation of products of sizes greater than 700 bases inaccurate.

Findings

A simple protocol was developed for labeling 5' end of multiple DNA size markers with fluorescent dyes. This method involves cloning a pool of different size markers of DNA in a plasmid vector. PCR amplification of plasmid using IR dye labeled universal primers generates 5' fluorescent labeled products of various sizes. The size of products constituting the ladder can be customized as per the need. The generated size markers can be used without any further purification and were found to be stable up to one year at -20°C.

Conclusions

A simple method was developed for generating fluorescent dye labeled size standards. This method can be customized to generate different size standards as per experimental needs. The protocol described can also be adapted for developing labeled size standards for detection on platforms other than Li-COR i.e. other than infra red range of the spectrum.  相似文献   

2.
A rotating bioreactor for the cell/tissue culture should be operated to obtain sufficient nutrient transfer and avoid damage to the culture materials. Thus, the objective of the present study is to determine the appropriate suspension conditions for the bead/cell distribution and evaluate oxygen transport in the rotating wall vessel (RWV) bioreactor. A numerical analysis of the RWV bioreactor is conducted by incorporating the Eulerian-Eulerian multiphase and oxygen transport equations. The bead size and rotating speed are the control variables in the calculations. The present results show that the rotating speed for appropriate suspensions needs to be increased as the size of the bead/cell increases: 10 rpm for 200 microm; 12 rpm for 300 microm; 14 rpm for 400 microm; 18 rpm for 600 microm. As the rotating speed and the bead size increase from 10 rpm/200 microm to 18 rpm/600 microm, the mean oxygen concentration in the 80% midzone of the vessel is increased by approximately 85% after 1-h rotation due to the high convective flow for 18 rpm/600 microm case as compared to 10 rpm/200 microm case. The present results may serve as criteria to set the operating parameters for a RWV bioreactor, such as the size of beads and the rotating speed, according to the growth of cell aggregates. In addition, it might provide a design parameter for an advanced suspension bioreactor for 3-D engineered cell and tissue cultures.  相似文献   

3.
As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.  相似文献   

4.
As exciting light in a scanning confocal microscope encounters a cell and its subcellular components, it is refracted and scattered. A question arises as to what proportion of the exciting light is scattered by subcellular structures and whether cells in the vicinity of the imaged area, i.e., cells that are not directly illuminated by the laser beam, can be affected by either an exposure to scattered light and ensuing phototoxic reactions, or by the products of photoactivated reactions diffusing out of the directly illuminated area. We have designed a technique, which allows us to detect subtle cell photodamage and estimate the extent and range of phototoxic effects inflicted by interaction between scattered exciting light and fluorescent probes in the vicinity of the illuminated area. The technique is based on detecting an increased influx of acridine orange into photodamaged cells, which is manifested by a change of color. We demonstrate that phototoxic effects can be exerted not only on the illuminated cell, but also on fluorescently labeled neighboring cells. The damage inflicted on neighbors is due to exposure to light scattered by the imaged (i.e., directly illuminated) cell, but not phototoxic products diffusing out of the directly illuminated area. When light encounters a cell nucleus, scattering is so intense that photodamage can be inflicted even on fluorescently labeled cells located within a radius of approximately 90 microm, i.e., several cell diameters away. This range of scattering is comparable with that caused by the glass bead resting on a coverslip (up to 120 microm). The intense scattering of exciting light imposes limits on FRAP, FLIP, and other techniques employing high intensity laser beams.  相似文献   

5.
We demonstrate the real-time on-chip detection and manipulation of single 1 microm superparamagnetic particles in solution, with the aim to develop a biosensor that can give information on biological function. Our chip-based sensor consists of micro-fabricated current wires and giant magneto resistance (GMR) sensors. The current wires serve to apply force on the particles as well as to magnetize the particles for on-chip detection. The sensitivity profile of the sensor was reconstructed by simultaneously measuring the sensor signal and the position of an individual particle crossing the sensor. A single-dipole model reproduces the measured sensitivity curve for a 1 microm bead. For a 2.8 microm bead the model shows deviations, which we attribute to the fact that the particle size becomes comparable to the sensor width. In the range between 1 and 10 particles, we observed a linear relationship between the number of beads and the sensor signal. The real-time detection and manipulation of individual particles opens the possibility to perform on-chip high-parallel single-particle assays.  相似文献   

6.
Hammer A  Grüttner C  Schumann R 《Protist》1999,150(4):375-382
Laboratory experiments were carried out to investigate the effect of food quality, measured as surface charge of the particles, on capture efficiency and ingestion rate by the heterotrophic dinoflagellate Oxyrrhis marina. Fluorescent particles in two size classes of around 1 and 4 microm and of 7 different qualities were offered to the flagellate: carbohydrate and albumin particles, the algae Synechocystis spec. and Chlorella spec., carboxylated microspheres, silicate particles and bacteria. Rates of particle uptake showed significant differences depending on particle size and quality, and ranged from 0 to 4 particles cell(-1) h(-1). Ingestion rates were up to 4 times higher for 4 pm particles than for 1 microm particles, which indicates strong size-selective feeding. Our main result is that the surface charge or zeta potential, of artificial particles, i.e. carboxylated microspheres (> or = -107 mV) and silicate particles, strongly differ from more natural and natural food (< or = -17 mV). For both size classes Oxyrrhis had ingestion rates up to 4 times higher for particles with less negative charge, such as albumin particles or algae. Thus, the zeta potential of the model food should be considered in experimental design. Particles with a zeta potential similar to that of natural food, e.g. albumin, seem to be the preferred model food.  相似文献   

7.
The objective of this study was to prepare and cross-link carrageenan beads that may be used as a controlled release delivery system. The influence of the bulk carrageenan and cross-linker concentrations on the bead size was studied in order to assess the mechanism of cross-linking between epichlorohydrin and the polysaccharide. The conditions were optimised on macroparticles (3.1 mm in diameter) for a better understanding of the cross-link density and its effect on the morphology and surface topography of the bead. It was shown that low epichlorohydrin concentrations led to unstable and weak beads with uneven and cracked surfaces. The optimum cross-linker concentration, which resulted in smooth and stable gel beads, was applied to microparticles (76 μm in diameter). The swelling/shrinking behaviour of these cross-linked microgels in saline solutions showed great potential for the application of these micro-sponges as delivery systems in food or pharmaceutical products.  相似文献   

8.
Although light microscopy and three-dimensional image analysis have made considerable progress during the last decade, it is still challenging to analyze the genome nano-architecture of specific gene domains in three-dimensional cell nuclei by fluorescence microscopy. Here, we present for the first time chromatin compaction measurements in human lymphocyte cell nuclei for three different, specific gene domains using a novel light microscopic approach called Spatially Modulated Illumination microscopy. Gene domains for p53, p58, and c-myc were labeled by fluorescence in situ hybridization and the sizes of the fluorescence in situ hybridization "spots" were measured. The mean diameters of the gene domains were determined to 103 nm (c-myc), 119 nm (p53), and 123 nm (p58) and did not correlate to the genomic, labeled sequence length. Assuming a spherical domain shape, these values would correspond to volumes of 5.7 x 10(-4) microm(3) (c-myc), 8.9 x 10(-4) microm(3) (p53), and 9.7 x 10(-4) microm(3) (p58). These volumes are approximately 2 orders of magnitude smaller than the diffraction limited illumination or observation volume, respectively, in a confocal laser scanning microscope using a high numerical aperture objective lens. By comparison of the labeled sequence length to the domain size, compaction ratios were estimated to 1:129 (p53), 1:235 (p58), and 1:396 (c-myc). The measurements demonstrate the advantage of the SMI technique for the analysis of gene domain nano-architecture in cell nuclei. The data indicate that chromatin compaction is subjected to a large variability which may be due to different states of genetic activity or reflect the cell cycle state.  相似文献   

9.
Microbeads that are both paramagnetic and fluorescently labeled are commercially available in colors spanning the visible spectrum. Although these commercial beads can be bright, polydispersity in both size and fluorescent intensity limit their use in quantitative assays. Very recently, more monodisperse beads have become available, but their large size and surface properties make them less than ideal for some bioassay applications. Here we describe methods to customize commercial nonfluorescent magnetic microparticles with fluorescent dyes and quantum dots (QDs) without affecting their magnetic or surface chemical properties. Fluorescent dyes and 3.3-nm diameter CdSe/ZnS QDs were sequestered within 0.8-micron diameter magnetic beads by swelling the polystyrene matrix of the bead in organic solvent, letting the chromophores partition, and then collapsing the matrix in polar solvents. Chromophore incorporation has been characterized using both UV-visible absorption spectroscopy and fluorescence microscopy, with an average of 3 x 10(8) rhodamine 6G molecules/bead and 6 x 10(4) QDs/bead. The modified beads are uniform in size and intensity, with optical properties comparable to currently available commercial beads. Immunoassay results obtained with our custom fluorescent magnetic microbeads are consistent with those obtained using conventional magnetic microbeads.  相似文献   

10.
Summary Conidia of Aspergillus oryzae were immobilized in Ca-alginate beads and then incubated in a nutrient medium to yield an immobilized biocatalyst producing kojic acid. The immobilized cell cultures produced kojic acid linearly during cultivation. Regardless of the size of the immobilized particles, there existed an optimal nitrogen concentration for the maximum production rate of kojic acid, at which smaller bead sizes resulted in a higher production rate. When the growth of mycelia were confined within the bead surface and segregated from each other by gel material, they produced kojic acid with maximal catalytic activity and exhibited the highest conversion yield of glucose. The extent of mycelial segregation was especially higher in cultures of smaller bead particles, and the depth of mycelial growth was 150 to 250 m from the gel bead surface in all cultures of different nitrogen concentrations and bead sizes. Therefore, for the maximum expression of catalytic activities of immobilized mycelial cultures, it was found very critical to optimally control the mycelial distribution in gel beads by the culture conditions affecting mycelial growth.  相似文献   

11.
We determined the effects of grain size and nutritional conditions on the penetration rate and metabolic activity of Escherichia coli strains in anaerobic, nutrient-saturated chambers packed with different sizes of glass beads (diameters, 116 to 767 μm) under static conditions. The chambers had nearly equal porosities (38%) but different calculated pore sizes (range, 10 to 65 μm). Motile strains always penetrated faster than nonmotile strains, and nutrient conditions that resulted in faster growth rates (fermentative conditions versus nitrate-respiring conditions) resulted in faster penetration rates for both motile and nonmotile strains for all of the bead sizes tested. The penetration rate of nonmotile strains increased linearly when bead size was increased, while the penetration rate of motile strains became independent of the bead size when beads having diameters of 398 μm or greater were used. The rate of H2 production and the final amount of H2 produced decreased when bead size was decreased. However, the final protein concentrations were similar in chambers packed with 116-, 192-, and 281-μm beads and were only slightly higher in chambers packed with 398- and 767-μm beads. Our data indicated that conditions that favored faster growth rates also resulted in faster penetration times and that the lower penetration rates observed in chambers packed with small beads were due to restriction of bacterial activity in the small pores. The large increases in the final amount of hydrogen produced without corresponding increases in the final amount of protein made indicated that metabolism became uncoupled from cell mass biosynthesis as bead size increased, suggesting that pore size influenced the efficiency of substrate utilization.  相似文献   

12.
Selection of an appropriate sampling strategy is an important prerequisite to establish core collections of appropriate size in order to adequately represent the genetic spectrum and maximally capture the genetic diversity in available crop collections. We developed a simulation approach to identify an optimal sampling strategy and core-collection size, using isozyme data from a CIP germplasm collection on an Andean tetraploid potato. Five sampling strategies, constant (C), proportional (P), logarithmic (L), square-root (S) and random (R), were tested on isozyme data from 9,396 Andean tetraploid potato accessions characterized for nine isozyme loci having a total of 38 alleles. The 9,396 accessions, though comprising 2,379 morphologically distinct accessions, were found to represent 1,910 genetically distinct groups of accessions for the nine isozyme loci using a sort-and-duplicate-search algorithm. From each group, one accession was randomly selected to form a genetically refined entire collection (GREC) of size 1,910. The GREC was used to test the five sampling strategies. To assess the behavior of the results in repeated sampling, k = 1,500 and 5,000 independent random samples (without replacement) of admissible sizes n = 50(50)1,000 for each strategy were drawn from GREC. Allele frequencies (AF) for the 38 alleles and locus heterozygosity (LH) for the nine loci were estimated for each sample. The goodness of fit of samples AF and LH with those from GREC was tested using the L2 test. A core collection of size n = 600, selected using either the P or the R sampling strategy, was found adequately to represent the GREC for both AF and LH. As similar results were obtained at k = 1,500 and 5,000, it seems adequate to draw 1,500 independent random samples of different sizes to test the behavior of different sampling strategies in order to identify an appropriate sampling approach, as well as to determine an optimal core collection size.  相似文献   

13.
In recent years, like others in Europe, the Slovenian government has introduced national and European quality schemes and launched a campaign to inform consumers and boost demand for local products. Very few studies consider consumers' hedonic liking of different food products labeled with Protected Designation of Origin (PDO)/Protected Geographical Indication (PGI) indications. This study therefore aims to fill this research gap and identify whether information affects the hedonic liking of various typical Slovenian PDO/PGI‐labeled products compared to their alternative conventional food products, whether Slovenian consumers like different typical Slovenian PDO/PGI‐labeled food products relative to their conventional food products, and which food products they sensorically prefer. The study findings show consumer hedonic liking is identical for all PDO/PGI‐labeled regional products, yet their sensory preferences reveal some significant differences between the analyzed products by age, gender, and education. Accordingly, studies should employ different sensory analyses for different food products and not generalized consumer hedonic liking/preference based on just one food product.

Practical applications

The finding that consumers do not hold hedonic preferences for either PDO/PGI‐labeled or conventional products when both informed and blind has significant implications for the Slovenian government, the marketers of labeled products and consumer policy aiming to promote better labeled products. For transition countries like Slovenia that have recently introduced food products labeling meeting EU standard but have a relatively small food industry based on local ingredients, traditional recipes, and production methods, our findings reveal the need to extend and intensify promotion and communication activities that highlight the guaranteed quality and use of local ingredients to boost consumers' preferences for PDO/PGI‐labeled products like cheese, ham, and honey.  相似文献   

14.
Food availability is one of the basic factors affecting primate density and socioecology, but food availability is difficult to assess. Two different ways to obtain accurate estimates of food availability have been proposed: using phenology data or using the behaviour of animals. Phenology data can be refined by only including trees that are large enough to be used; including (potential) tree species in which by the concerned primate species forage; or including (fruiting) trees of these species that actually produce fruit. Alternatively, the sizes of the actually visited trees (foraging trees) give an estimate of fruit availability. These measures are compared for three sympatric primate species at the Ketambe Research Station, Sumatra, Indonesia: the Thomas langur, the long-tailed macaque and the orangutan. The sizes of fruiting trees and the foraging trees are larger than the potential trees. The sizes of the potential trees and of the fruiting trees are similar for the three primate species. This, however, is not reflected in the use of trees: the langurs forage on average in trees of similar size to those producing fruit, whereas the macaques and orangutans forage in trees larger than those producing fruit. The use of trees does not necessitate a different cut off point of included dbhs for the three compared primate species. The use of trees of different sizes, however, may be regulated by food competition. This indicates that sympatric primates make different foraging decisions and that behavioural measures of food availability will be less reliable.  相似文献   

15.
T L Cucci  M E Sieracki 《Cytometry》2001,44(3):173-178
BACKGROUND: Forward-angle light scatter, as measured by flow cytometry, can be used to estimate the size spectra of cell assemblages from natural waters. The refractive index of water samples from aquatic environments can differ because of a variety of factors such as dissolved organic content, aldehyde preservative, sample salinity, and temperature. In flow cytometric analyses, mismatch between the refractive indices of the sheath fluid and the sample causes distortion of the forward-angle light scatter signal. We measured the effect of this mismatch on cell size measurements. METHODS: We examined the error by measuring the scatter signal of a variety of particle types and sizes and changing the sheath-to-sample salinity ratio. The effects were characterized for standard microspheres, cultured phytoplankton cells of different sizes, and natural populations from an estuarine river. RESULTS: We found that the distorted scatter signals resulted in an increase in the apparent size of small cells (1--2 microm) by a factor of 4.5 times. Cells in the size range of 3--5 microm were less affected by the salinity differences, and cells larger than 5 microm were not affected. Chlorophyll and phycoerythrin fluorescences and 90 degrees light scatter signals were not changed by sheath and sample salinity differences. CONCLUSIONS: Care must be taken to ensure that the sheath and sample refractive index are matched when using forward light scatter to measure cell size spectra, especially in estuarine studies, where salinity can vary greatly. Of the factors considered that can change the sample refractive index, salinity gradients in an estuary cause the largest index mismatch and, consequently, the largest error in scatter.  相似文献   

16.
Staphylococcal contamination of food products and staphylococcal food-borne illnesses continue to be a problem worldwide. Screening of food for the presence of Staphylococcus aureus and/or enterotoxins using traditional methods is laborious. Reliable and rapid multiplex detection methods from a single food extract or culture supernatant would simplify testing. A fluorescence-based cytometric bead array was developed for the detection of staphylococcal enterotoxin B (SEB), using magnetic microspheres coupled with either an engineered, enterotoxin-specific Vβ domain of the T-cell receptor (Vβ-TCR) or polyclonal antibodies. The binding affinity of the Vβ-TCR for SEB has been shown to be in the picomolar range, comparable to the best monoclonal antibodies. The coupled beads were validated with purified enterotoxins and tested in a variety of food matrices spiked with enterotoxins. The Vβ-TCR or antibody was shown to specifically bind SEB in four different food matrices, including milk, mashed potatoes, vanilla pudding, and cooked chicken. The use of traditional polyclonal antibodies and Vβ-TCR provides a redundant system that ensures accurate identification of the enterotoxin, and the use of labeled microspheres permits simultaneous testing of multiple enterotoxins from a single sample.  相似文献   

17.
A neglected life-history trait: clutch-size variance in snakes   总被引:3,自引:0,他引:3  
Most analyses of life-history traits have focused on mean values rather than their associated variance. We review published and original data on snakes, including records gathered over many years on single populations, to examine patterns in clutch-size variability in these animals. Within single populations, the coefficient of variation of clutch size did not vary significantly with maternal body size, or among years. The stability of clutch-size variance through time is consistent with experimental studies showing no significant influence of food intake rates on this characteristic. Clutch-size variances did not differ between viviparous and oviparous snakes, but were dependent upon allometric relationships involving maternal body size and the relationship between clutch size and body size. Clutch-size variability was highest in species with relatively variable female sizes, and with a high rate of increase in clutch size with increasing body size. These two factors acted to magnify the extent of clutch-size variability engendered by variability in maternal body sizes. The relationships among these variables were similar in the two squamate Suborders, but the larger body sizes and mean clutch sizes of snakes resulted in clutch-size variances being higher in snakes than in lizards.  相似文献   

18.
Azo dyes are recalcitrant and xenobiotic nature makes these compounds a challenging task for continuous biodegradation up to satisfactorily levels in large-scale. In the present report, the biodegradation efficiency of alginate immobilized indigenous Aeromonas sp. MNK1 on Methyl Orange (MO) in a packed bed reactor was explored. The experimental results were used to determine the external mass transfer model. Complete MO degradation and COD removal were observed at 0.20 cm bead size and 120 ml/h flow rate at 300 mg/l of initial dye concentration. The degradation of MO decreased with increasing bead sizes and flow rates, which may be attributed to the decrease in surface of the beads and higher flux of MO, respectively. The experimental rate constants (k ps) for various beads sizes and flow rates were calculated and compared with theoretically obtained rate constants using external film diffusion models. From the experimental data, the external mass transfer effect was correlated with a model J D = K Re ?(1 ? n). The model was tested with K value (5.7) and the Colburn factor correlation model for 0.20, 0.40 and 0.60 bead sizes were J D = 5.7 Re ?0.15, J D = 5.7 Re ?0.36 and J D = 5.7 Re ?0.48, respectively. Based on the results, the Colburn factor correlation models were found to predict the experimental data accurately. The proposed model was constructive to design and direct industrial applications in packed bed reactors within acceptable limits.  相似文献   

19.
We present measurements of the forces on, and displacements of, an optically trapped bead along the propagation direction of the trapping laser beam (the axial direction). In a typical experimental configuration, the bead is trapped in an aqueous solution using an oil-immersion, high-numerical-aperture objective. This refractive index mismatch complicates axial calibrations due to both a shift of the trap center along the axial direction and spherical aberrations. In this work, a known DNA template was unzipped along the axial direction and its characteristic unzipping force-extension data were used to determine 1), the location of the trap center along the axial direction; 2), the axial displacement of the bead from the trap center; and 3), the axial force exerted on the bead. These axial calibrations were obtained for trap center locations up to approximately 4 microm into the aqueous solution and with axial bead displacements up to approximately 600 nm from the trap center. In particular, the axial trap stiffness decreased substantially when the trap was located further into the aqueous solution. This approach, together with conventional lateral calibrations, results in a more versatile optical trapping instrument that is accurately calibrated in all three dimensions.  相似文献   

20.
A three-dimensional viscoelastic finite element model is developed for cell micromanipulation by magnetocytometry. The model provides a robust tool for analysis of detailed strain/stress fields induced in the cell monolayer produced by forcing one microbead attached atop a single cell or cell monolayer on a basal substrate. Both the membrane/cortex and the cytoskeleton are modeled as Maxwell viscoelastic materials, but the structural effect of the membrane/cortex was found to be negligible on the timescales corresponding to magnetocytometry. Numerical predictions are validated against experiments performed on NIH 3T3 fibroblasts and previous experimental work. The system proved to be linear with respect to cytoskeleton mechanical properties and bead forcing. Stress and strain patterns were highly localized, suggesting that the effects of magnetocytometry are confined to a region extending <10 microm from the bead. Modulation of cell height has little effect on the results, provided the monolayer is >5 micro m thick. NIH 3T3 fibroblasts exhibited a viscoelastic timescale of approximately 1 s and a shear modulus of approximately 1000 Pa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号