首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) is a focus of attention because it is defective in most patients with cystic fibrosis. DeltaF508 CFTR, which does not mature conformationally, normally does not exit the endoplasmic reticulum, but if induced to do so at reduced temperature is short-lived at the surface. We used external epitope-tagged constructs to elucidate the itinerary and kinetics of wild type and DeltaF508 CFTR in the endocytic pathway and visualized movement of CFTR from the surface to intracellular compartments. Modulation of different endocytic steps with low temperature (16 degrees C) block, protease inhibitors, and overexpression of wild type and mutant Rab GTPases revealed that surface CFTR enters several different routes, including a Rab5-dependent initial step to early endosomes, then either Rab11-dependent recycling back to the surface or Rab7-regulated movement to late endosomes or alternatively Rab9-mediated transit to the trans-Golgi network. Without any of these modulations DeltaF508 CFTR rapidly disappears from and does not return to the cell surface, confirming that its altered structure is detected in the distal as well as proximal secretory pathway. Importantly, however, the mutant protein can be rescued at the plasma membrane by Rab11 overexpression, proteasome inhibitors, or inhibition of Rab5-dependent endocytosis.  相似文献   

2.
Misfolded proteins destined for the cell surface are recognized and degraded by the ERAD [ER (endoplasmic reticulum) associated degradation] pathway. TS (temperature-sensitive) mutants at the permissive temperature escape ERAD and reach the cell surface. In this present paper, we examined a TS mutant of the CFTR [CF (cystic fibrosis) transmembrane conductance regulator], CFTR DeltaF508, and analysed its cell-surface trafficking after rescue [rDeltaF508 (rescued DeltaF508) CFTR]. We show that rDeltaF508 CFTR endocytosis is 6-fold more rapid (approximately 30% per 2.5 min) than WT (wild-type, approximately 5% per 2.5 min) CFTR at 37 degrees C in polarized airway epithelial cells (CFBE41o-). We also investigated rDeltaF508 CFTR endocytosis under two further conditions: in culture at the permissive temperature (27 degrees C) and following treatment with pharmacological chaperones. At low temperature, rDeltaF508 CFTR endocytosis slowed to WT rates (20% per 10 min), indicating that the cell-surface trafficking defect of rDeltaF508 CFTR is TS. Furthermore, rDeltaF508 CFTR is stabilized at the lower temperature; its half-life increases from <2 h at 37 degrees C to >8 h at 27 degrees C. Pharmacological chaperone treatment at 37 degrees C corrected the rDeltaF508 CFTR internalization defect, slowing endocytosis from approximately 30% per 2.5 min to approximately 5% per 2.5 min, and doubled DeltaF508 surface half-life from 2 to 4 h. These effects are DeltaF508 CFTR-specific, as pharmacological chaperones did not affect WT CFTR or transferrin receptor internalization rates. The results indicate that small molecular correctors may reproduce the effect of incubation at the permissive temperature, not only by rescuing DeltaF508 CFTR from ERAD, but also by enhancing its cell-surface stability.  相似文献   

3.
The most common mutation in cystic fibrosis (deletion of phenylalanine 508 (DeltaF508) in the cystic fibrosis conductance transmembrane regulator (CFTR) gene) causes defective synthesis of CFTR protein. To understand how this deletion interferes with protein folding, we made the equivalent deletion (DeltaY490) in P-glycoprotein (P-gp). A Cys-less P-gp with cysteines in transmembrane (TM) 4 or TM5 can be cross-linked with a cysteine in TM12. Deleting Tyr(490) in P-gp resulted in an inactive and defectively processed mutant in which no cross-linking between TM4 or TM5 and TM12 was detected. Expression of the DeltaY490 mutant in the presence of a chemical chaperone corrected the processing defect and yielded active P-gp mutants that could be cross-linked between TM4 or TM5 and TM12. Cross-linking between TM4 or TM5 and TM12 was also detected when residues (483)TIAENIRYG(491) in P-gp were replaced with residues (501)TIKENIIFG(509) from CFTR (P-gp/CFTR). Deleting Phe(508) in the P-gp/CFTR chimera, however, caused defective processing of the mutant protein and no detectable cross-linking between TM4 or TM5 and TM12. The processing defect was corrected with a chemical chaperone and yielded active P-gp/CFTR mutant proteins that could be cross-linked. These results show that deletion at residue 490 disrupts packing of the TM segments possibly by affecting interaction between the first nucleotide-binding domain (Tyr(490)) and the first cytoplasmic loop (Glu(184)).  相似文献   

4.
5.
Deletion of phenylalanine 508 (DeltaF508) from the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common mutation in cystic fibrosis. The F508 region lies within a surface-exposed loop that has not been assigned any interaction with associated proteins. Here we demonstrate that the pleiotropic protein kinase CK2 that controls protein trafficking, cell proliferation, and development binds wild-type CFTR near F508 and phosphorylates NBD1 at Ser-511 in vivo and that mutation of Ser-511 disrupts CFTR channel gating. Importantly, the interaction of CK2 with NBD1 is selectively abrogated by the DeltaF508 mutation without disrupting four established CFTR-associated kinases and two phosphatases. Loss of CK2 association is functionally corroborated by the insensitivity of DeltaF508-CFTR to CK2 inhibition, the absence of CK2 activity in DeltaF508 CFTR-expressing cell membranes, and inhibition of CFTR channel activity by a peptide that mimics the F508 region of CFTR (but not the equivalent DeltaF508 peptide). Disruption of this CK2-CFTR association is the first described DeltaF508-dependent protein-protein interaction that provides a new molecular paradigm in the most frequent form of cystic fibrosis.  相似文献   

6.
We previously generated an adenoassociated viral gene therapy vector, rAAV-Delta264 cystic fibrosis transmembrane conductance regulator (CFTR), missing the first four transmembrane domains of CFTR. When infected into monkey lungs, Delta264 CFTR increased the levels of endogenous wild type CFTR protein. To understand this process, we transfected Delta264 CFTR plasmid cDNA into COS7 cells, and we noted that protein expression from the truncation mutant is barely detectable when compared with wild type or DeltaF508 CFTR. Delta264 CFTR protein expression increases dramatically when cells are treated with proteasome inhibitors. Cycloheximide experiments show that Delta264 CFTR is degraded faster than DeltaF508 CFTR. VCP and HDAC6, two proteins involved in retrograde translocation from endoplasmic reticulum to cytosol for proteasomal and aggresomal degradation, coimmunoprecipitate with Delta264 CFTR. In cotransfection studies in COS7 cells and in transfection of Delta264 CFTR into cells stably expressing wild type and DeltaF508 CFTR, Delta264 CFTR increases wild type CFTR protein and increases levels of maturation of immature band B to mature band C of DeltaF508 CFTR. Thus the adenoassociated viral vector, rAAV-Delta264 CFTR, is a highly promising cystic fibrosis gene therapy vector because it increases the amount of mature band C protein both from wild type and DeltaF508 CFTR and associates with key elements in quality control mechanism of CFTR.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) has been known for the past 11 years to be a membrane glycoprotein with chloride channel activity. Only recently has the glycosylation of CFTR been examined in detail, by O'Riordan et al in Glycobiology. Using cells that overexpress wild-type (wt)CFTR, the presence of polylactosamine was noted on the fully glycosylated form of CFTR. In the present commentary the results of that work are discussed in relation to the glycosylation phenotype of cystic fibrosis (CF), and the cellular localization and processing of ΔF508 CFTR. The significance of the glycosylation will be known when endogenous CFTR from primary human tissue is examined.  相似文献   

8.
Most cases of cystic fibrosis (CF), a common inherited disease of epithelial cell origin, are caused by the deletion of Phe508 located in the first nucleotide-binding domain (NBF1) of the protein called CFTR (cystic fibrosis transmembrane conductance regulator). To gain greater insight into the structure within the Phe508 region of the wild-type protein and the change in structure that occurs when this residue is deleted, we conducted nuclear magnetic resonance (NMR) studies on representative synthetic 26 and 25 amino acid peptide segments. 2D 1H NMR studies at 600 MHz of the 26-residue peptide consisting of Met498 to Ala523 in 10% DMSO, pH 4.0, at 25 degrees C show a continuous but labile helix from Gly500 to Lys522, based on both NH-NH(i,i+1) and alphaH-NH(i,i+1) NOEs. Phe508 within this helix shows only short-range (i, 相似文献   

9.
The most common defect in cystic fibrosis, deletion of phenylalanine from position 508 of the cystic fibrosis transmembrane conductance regulator (Delta F508 CFTR), decreases the trafficking of this protein to the cell surface membrane. Previous studies have shown that low temperature and high concentrations of glycerol or trimethylamine N-oxide can partially counteract the processing defect of Delta F508 CFTR. The present study investigates whether physiologically relevant concentrations of organic solutes, accumulated by cotransporter proteins, can rescue the misprocessing of Delta F508 CFTR. Myoinositol alone or myoinositol, betaine, and taurine given sequentially increased the processing of core-glycosylated, endoplasmic reticulum-arrested Delta F508 CFTR into the fully glycosylated form of CFTR in IB3 cells or NIH 3T3 cells stably expressing Delta F508 CFTR. Pulse-chase experiments using transiently transfected COS7 cells demonstrated that organic solutes also increased the processing of the core-glycosylated form of green fluorescent protein-Delta F508 CFTR. Moreover, the prolonged half-life of the complex-glycosylated form of GFP-Delta F508 CFTR suggests that this treatment stabilized the mature form of the protein. In vitro studies of purified NBD1 stability and aggregation showed that myoinositol stabilized both the Delta F508 and wild type CFTR and inhibited Delta F508 misfolding. Most significantly, treatment of CF bronchial airway cells with these transportable organic solutes restores cAMP-stimulated single channel activity of both CFTR and outwardly rectifying chloride channel in the cell surface membrane and also restores a forskolin-stimulated macroscopic 36Cl- efflux. We conclude that organic solutes can repair CFTR functions by enhancing the processing of Delta F508 CFTR to the plasma membrane by stabilizing the complex-glycosylated form of Delta F508 CFTR.  相似文献   

10.
The DeltaF508 gene mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane. The current study examines the biochemical basis for the upregulation of DeltaF508 CFTR expression by sodium butyrate and low temperature. Surface CFTR protein expression was determined by quantitative immunoblot following surface biotinylation and streptavidin extraction. CF gene expression was measured by Northern analysis and CFTR function by forskolin-stimulated (125)I efflux. Butyrate increased DeltaF508 mRNA levels and protein expression but did not increase the biochemical or functional expression of DeltaF508 CFTR at the cell surface. Low temperature increased the biochemical and functional expression of DeltaF508 CFTR at the cell surface but did not increase CFTR mRNA levels. Combining treatments led to a synergistic increase in both DeltaF508 mRNA and surface protein levels that results from the stabilization of CFTR mRNA and protein by low temperature. These findings indicate that surface expression of DeltaF508 CFTR can be markedly enhanced by carefully selected combination agents.  相似文献   

11.
Chan MM  Chmura K  Chan ED 《Cytokine》2006,33(6):309-316
A satisfactory model describing the airway surface fluid (ASF) in the airways of persons with cystic fibrosis (CF) remains to be established due to theoretical challenges to both the "Hydration Hypothesis" and the "Salt Hypothesis." Irrespective of these models, inhaled hypertonic saline is often used to facilitate clearance of inspissated secretions. Hypertonicity induces interleukin-8 (IL-8) expression, a potent chemokine for neutrophils. The objectives of this study were: (i) to determine the relative contribution of three potential cis-regulatory elements in the regulation of NaCl-induced IL-8 production in BEAS-2B human bronchial epithelial cells, (ii) to compare NaCl-induced IL-8 expression in IB3-1 bronchial epithelial cells, which have the DeltaF508/W1282X mutation of the CF transmembrane conductance regulator (CFTR) gene, with that in C38 cells, which are IB3-1 cells stably transfected with a truncated but functional CFTR gene, and (iii) to compare equal osmolar concentrations of NaCl and D-sorbitol in the induction of IL-8 in all three cell types. In human bronchial epithelial cells, binding sites for NFkappaB, AP-1, and NF-IL6 in the 5'-flanking region of the IL-8 promoter are necessary for optimal NaCl induction of IL-8. Human bronchial epithelial cells with the DeltaF508/W1282X CFTR mutation produce an exaggerated amount of basal and NaCl-induced IL-8.  相似文献   

12.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

13.
Tector M  Hartl FU 《The EMBO journal》1999,18(22):6290-6298
The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel with 12 membrane-spanning sequences, undergoes inefficient maturation in the endoplasmic reticulum (ER). Potentially charged residues in transmembrane segments may contribute to this defect in biogenesis. We demonstrate that transmembrane segment 6 of CFTR, which contains three basic amino acids, is extremely unstable in the lipid bilayer upon membrane insertion in vitro and in vivo. However, two distinct mechanisms counteract this anchoring deficiency: (i) the ribosome and the ER translocon co-operate to prevent transmembrane segment 6 from passing through the membrane co- translationally; and (ii) cytosolic domains of the ion channel post-translationally maintain this segment of CFTR in a membrane-spanning topology. Although these mechanisms are essential for successful completion of CFTR biogenesis, inefficiencies in their function retard the maturation of the protein. It seems possible that some of the disease-causing mutations in CFTR may reduce the efficiency of proper membrane anchoring of the protein.  相似文献   

14.
Cystic fibrosis is caused by mutations inthe cystic fibrosis transmembrane conductance regulator (CFTR) gene.CFTR is a chloride channel whose activity requires protein kinaseA-dependent phosphorylation of an intracellular regulatory domain(R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs).To identify potential sites of domain-domain interaction within CFTR,we expressed, purified, and refolded histidine (His)- andglutathione-S-transferase (GST)-tagged cytoplasmic domainsof CFTR. ATP-binding to his-NBD1 and his-NBD2 was demonstrated bymeasuring tryptophan fluorescence quenching. Trypticdigestion of in vitro phosphorylated his-NBD1-R and in situphosphorylated CFTR generated the same phosphopeptides. An interactionbetween NBD1-R and NBD2 was assayed by tryptophan fluorescencequenching. Binding among all pairwise combinations of R-domain, NBD1,and NBD2 was demonstrated with an overlay assay. To identifyspecific sites of interaction between domains of CFTR, an overlay assaywas used to probe an overlapping peptide library spanning allintracellular regions of CFTR with his-NBD1, his-NBD2, andGST-R-domain. By mapping peptides from NBD1 and NBD2 that bound toother intracellular domains onto crystal structures for HisP, MalK, andRad50, probable sites of interaction between NBD1 and NBD2 wereidentified. Our data support a model where NBDs form dimers with theATP-binding sites at the domain-domain interface.

  相似文献   

15.
16.
17.
Mismanaged protein trafficking by the proteostasis network contributes to several conformational diseases, including cystic fibrosis, the most frequent lethal inherited disease in Caucasians. Proteostasis regulators, as cystamine, enable the beneficial action of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators in ΔF508-CFTR airways beyond drug washout. Here we tested the hypothesis that functional CFTR protein can sustain its own plasma membrane (PM) stability. Depletion or inhibition of wild-type CFTR present in bronchial epithelial cells reduced the availability of the small GTPase Rab5 by causing Rab5 sequestration within the detergent-insoluble protein fraction together with its accumulation in aggresomes. CFTR depletion decreased the recruitment of the Rab5 effector early endosome antigen 1 to endosomes, thus reducing the local generation of phosphatidylinositol-3-phosphate. This diverts recycling of surface proteins, including transferrin receptor and CFTR itself. Inhibiting CFTR function also resulted in its ubiquitination and interaction with SQSTM1/p62 at the PM, favoring its disposal. Addition of cystamine prevented the recycling defect of CFTR by enhancing BECN1 expression and reducing SQSTM1 accumulation. Our results unravel an unexpected link between CFTR protein and function, the latter regulating the levels of CFTR surface expression in a positive feed-forward loop, and highlight CFTR as a pivot of proteostasis in bronchial epithelial cells.  相似文献   

18.
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.  相似文献   

19.
Cheung JC  Deber CM 《Biochemistry》2008,47(6):1465-1473
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.  相似文献   

20.
We have investigated several purification strategies for the cystic fibrosis transmembrane regulator (CFTR) based on its structural similarity to other proteins of the traffic ATPase/ABC transporter family. Recombinant CFTR expressed in heterologous cells was readily solubilized by digitonin and initially separated from the majority of other cellular proteins by sucrose density gradient centrifugation. CFTR, with two predicted nucleotide binding domains, bound avidly to several triazine dye columns, although elution with MgATP, MgCl2, or high ionic strength buffers was inefficient. CFTR did not bind to either ATP or ADP coupled to agarose. Because CFTR is a glycoprotein we investigated its binding to lectin columns. CFTR bound readily to wheat germ agglutinin, but poorly to Lens culinaris agglutinin. CFTR was enriched 9-10 times when eluted from wheat germ agglutinin with N-acetylglucosamine. This enrichment was tripled if lectin chromatography followed sucrose gradient centrifugation. Our results suggest the combination of sucrose density gradient centrifugation and lectin chromatography would be a satisfactory approach to initial purification of CFTR expressed in heterologous cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号