首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo.  相似文献   

2.
An endogenous soluble protease has been demonstrated to unmask a Ca2+-stimulated ATPase activity in purified dog gastric microsomes. The presence of ATP during protease treatment appears essential for the manifestation of the gastric Ca2+-stimulated ATPase activity. The endogenous protease appears to have trypsin-like activity, since soybean trypsin inhibitor completely blocks the protease effect. Manifestation of the Ca2+-stimulated ATPase occurs without affecting the microsomal (H+ +K+)-ATPase activity and associated H+ uptake ability. The unmasked Ca2+-stimulated ATPase appears insensitive to calmodulin. Possible roles of the enzyme in the regulation of gastric H+ transport have been discussed.  相似文献   

3.
The transversal distribution of the free NH2 groups associated with phosphatidyl ethanolamine and the intrinsic membrane proteins of the purified pig gastric microsomes was quantitated and their relations to the function of the gastric K+-stimulated ATPase was investigated. Three different chemical probes such as 2,4,6-trinitrobenzene sulfonic acid (TNBS), 1-fluoro-2,4-dinitrobenzene (FDNB), and 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) were used for the study. The structure-function relationship of the membrane NH2 groups was studied after modification with the probes under various conditions and relating the inhibition of the K+-stimulated ATPase to the ATPase-dependent H+ accumulation by the gastric microsomal vesicles. TNBS (2 mm) inhibits nearly completely the K+-stimulated ATPase and the vesicular dye accumulation, both in presence and absence of valinomycin plus K+. Both the K+-ATPase and dye uptake were largely (about 50%) protected against TNBS inhibition if the treatment with TNBS was carried out in presence of 2 mm ATP. TNBS and FDNB labeled 70% of the total microsomal PE; the intra- and extravesicular orientation being 48 and 22%, respectively. The presence or absence of ATP did not have any effect on the TNBS labeling of microsomal PE. ATP, however, significantly (P < 0.05) reduced the labeling of protein-bound NH2 groups of gastric microsomes by TNBS. The intra- and extravesicular orientation of the protein NH2 groups were 60 and 40%, respectively. Eighteen percent of the total protein-NH2 appeared to be associated with the K+-stimulated ATPase; the rest being associated with non-ATPase proteins of the microsomes. About half (50%) of the total free NH2 groups of the K+-stimulated ATPase were exposed to the vesicle exterior and were found to play critical roles in gastric ATPase function. The generation of florescence after MDPF conjugation of gastric microsomes was largely (50%) inhibited by ATP. ATP also protected completely the MDPF inhibition of gastric K+-stimulated ATPase and dye uptake.  相似文献   

4.
Differential centrifugation of oxyntic cell homogenates yielded microsomal fractions which contained large amounts of mitochondrial membrane. The presence of marker enzymes (succinate dehydrogenase and cytochrome c oxidase) indicated that mitochondrial contamination of crude microsomes ranged from 20 to 60% in different preparations. A discontinuous sucrose density gradient procedure was developed for the routine preparation of purified oxyntic cell microsomes. A K+-stimulated, Mg2+-requiring ATPase was localized in these purified membranes and coincided with the presence of a K+-stimulated p-nitrophenylphosphatase. Na+ and ouabain had no effect on the K+ stimulation of the microsomal ATPase. The apparent activation constant for K+ was approximately 1 mM at pH 7.5, the optimal pH for stimulation.An anion-sensitive ATPase has been widely studied in gastric microsomal preparations. We found that the basal microsomal ATPase (i.e. without K+) and the mitochondrial ATPase were inhibited by SCN? and enhanced by HCO3?, however, the K+-stimulated component of the microsomal ATPase was virtually unaffected by these anions.  相似文献   

5.
The phosphorylated intermediate in the (Na + K)-activated adenosine triphosphatase (Na-K ATPase) has been characterized as an L-glutamyl-γ-phosphate residue in the enzyme. This has been accomplished by digestion of the phosphorylated and nonphosphorylated forms of the enzyme with pepsin, reaction of the pepsin digests with [2,3-3H]N-(n-propyl)hydroxylmine, further digestion of the derivatized peptides with pronase in the presence of carrier L-glutamyl-γ-N-(n-propyl)hydroxamate and carrier L-aspartyl-N-(n-propyl)hydroxamate, and chromatographic purification. An increment in radioactivity migrated with authentic L-glutamyl-γ-N-(n-propyl)hydroxamate in a total of seven electrophoretic and chromatographic systems and on gel filtration. No increment in radioactivity was associated with authentic L-aspartyl-β-N-(n-propyl)hydroxamate in five out of the seven chromatographic and electrophoretic systems. At the last stage of purification the radioactivity from the phosphorylated enzyme which migrated as L-glutamyl-γ-N-(n-propyl)hydroxamate was 2½ times that from the nonphosphorylated enzyme. On the basis of these results it is concluded that the phosphorylated intermediate in the Na-K ATPase is an L-glutamyl-γ-phosphate residue. The beef brain Na-K ATPase has been solubilized with the nonionic detergent, Lubrol, and has been purified 10 times over that in the original microsomes. The soluble enzyme remains stable in the presence of ATP and either Na+ or K+. If the partially purified enzyme is electrophoresed in 3% polyacrylamide, followed by incubation with ATP, Na+, K+, and Mg++, a single, somewhat diffuse, ATPase band, which is ouabain-sensitive is seen. Protein impurities are also seen on the gel. Gel electrophoresis, after treatment of the partially purified enzyme with phenol-acetic acid-urea, shows about 12 discrete protein bands. Studies on the site-directed alkylation of the (Na + K)-activated adenosine triphosphatase with haloacetate derivatives of cardiotonic steroids are reviewed. Efforts are now underway to specifically alkylate the cardiotonic steroid site of the Na-K ATPase with hellebrigenin 3-[2-3H]iodoacetate and to purify the subunit of the enzyme containing the cardiotonic steroid site by following radioactivity. Finally, a working model for the role of the Na-K ATPase in the coupled transport of Na and K is presented.  相似文献   

6.
Experiments were performed to determine the effect of plasmalemma ATPase inhibitors on cell potentials (Ψ) and K+ (86Rb) influx of corn root tissue over a wide range of K+ activity. N,N′Dicyclohexylcarbodiimide (DCCD), oligomycin, and diethylstilbestrol (DES) pretreatment greatly reduced active K+ influx and depolarized Ψ at low, but not at high, K+ activity (K°). More comprehensive studies with DCCD and anoxia showed nearly complete inhibition of the active component of K+ influx over a wide range of K°, with no effect on the apparent permeability constant. DCCD had no effect on the electrogenic component of the cell potential (Ψp) above 0.2 millimolar K°. Net proton efflux was rapidly reduced 80 to 90% by DCCD. Since tissue ATP content and respiration were only slightly affected by the DCCD-pretreatment, the inhibitions of active K+ influx and Ψp at low K° can be attributed to inhibition of the plasmalemma ATPase.  相似文献   

7.
We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIβ. We show that topo IIβ is a DNA-dependent ATPase that appears to fit Michaelis–Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The kcat for ATP hydrolysis by human DNA topo IIβ in the presence of DNA is 2.25 s–1. We have characterised a topo IIβ derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s–1, while not significantly altering the apparent Km. The specificity constant for the interaction between ATP and topo IIβ (kcat/Kmapp) showed a 90% reduction for βS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIβ. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.  相似文献   

8.
A new simple procedure has been developed for the purification of plasma membranes from rabbit kidney microsomes which yields a three- to fourfold increase in the specific activity of Na+-K+-adenosine triphosphatase (ATPase). The procedure differs from previous methods with deoxycholate or other detergents and does not change the molecular activity of the ATPase. The K+-dependent p-nitrophenylphosphatase activity of the native Na+-K+-ATPase is controlled more effectively by Mg2+ in the presence of K+ at concentrations higher than that of Mg2+, and by K+ in the presence of Mg2+ at concentrations higher than that of K+. The enzyme in its Mg2+-regulating state, which shows K+-saturation curves with a Hill coefficient of 1, is less sensitive to ouabain (I0.5 = 90 μM) and corresponds to the enzyme conformation reported previously which is inhibited by the concurrent presence of Na+ and ATP or of Na+ and oligomycin (I0.5 is the midpoint of the saturation curve). The enzyme in its K+-regulating state, which shows K+-saturation curves with a Hill coefficient of 2, is more sensitive to ouabain inhibition (I05 = 8 μM) and corresponds to the enzyme conformation which is stimulated by the concurrent presence of Na+ and ATP or of Na+ and oligomycin. There appear to be two conformations of the enzyme that are regulated by Mg2+ binding on the inhibitory sites of the enzyme.  相似文献   

9.
Selective chemical modification was used to examine amino acid residues that might be critical for the operation of the gastric K+-stimulated ATPase. Modification of amino groups with the fluorigenic reagent 2-methoxy-2,4-diphenyl-3-dihydrofuranone resulted in selective inhibition of the K+-stimulated ATPase and H+-transporting activities of the gastric microsomes, while the Mg2+-ATPase was not affected. Half-maximal inhibition occurred at about 3 μg 2-methoxy-2,4-diphenyl-3-dihydrofuranone/ml at pH 8.5. ATP provided complete protection against inhibition; the apparent Km for ATP protection was about 50 μM. Nucleotide selectivity for protection was ATP > ADP > ITP > GTP > CTP > AMP. Sodium dodecyl sulfate gel electrophoresis of the reacted microsomes showed that virtually all the fluorescent label was on the Mr 100 000 peptide band, a very small peptide, and aminolipids. In the presence of ATP there was about 75% reduction in the fluorescent label on the Mr 100 000 peptide, but no change in the labeling of the other components. The arginine specific reagent, butanedione, inhibited Mg2+-ATPase and K+-ATPase activities, with the former being much less reactive. Similar to 2-methoxy-2,4-diphenyl-3-dihydrofuranone, ATP provided complete protection from butanedione treatment. It is concluded that amino and guanidino groups are critical to the function of the K+-ATPase and may be actually at the ATP binding site.  相似文献   

10.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

11.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

12.
Ward JM  Sze H 《Plant physiology》1992,99(3):925-931
To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3 but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.  相似文献   

13.
Treatment of hog gastric microsomes with the sulfhydryl reagent, thimerosal (ethylmercurithiosalicylate), produced differential effects on the K+-ATPase and the K+-stimulated p-nitrophenylphosphatase activities. For example, exposure to 2 mM thimerosal for 3 min severely reduced the activity of K+-stimulated ATPase, while K+-p-nitrophenylphosphatase activity was enhanced 2- to 3-fold. Higher concentration of thimerosal, or longer incubation times, also led to inhibition of K+-p-nitrophenylphosphatase. The activated state of p-nitrophenylphosphatase could be sustained by a 20-fold, or greater, dilution of treated membranes, and could be reversed by reduction of membrane SH groups by exogenous thiols. Significant activation of K+-p-nitrophenylphosphatase was not produced by p-chloromercuribenzene sulfonate, p-chloromercuribenzoate or mersalyl; however, ethyl mercuric chloride had qualitatively similar activity effects as thimerosal. Kinetics of K+-p-nitrophenylphosphatase for thimerosal-treated membranes were altered as follows: V increased; Km for p-nitrophenylphosphate unchanged for Ka for K+ increased. ATP, which is a potent inhibitor of K+-p-nitrophenylphosphatase activity in native membranes (KI ≈ 200 μM). These data suggest that there are multiple SH groups which differentially influence the gastric K+-stimulated ATPase activity. Defined treatments with thimerosal are interpreted as an uncoupling of the K+-stimulated phosphatase component of the enzyme (for which p-nitrophenylphosphatase is a presumed model reaction). Such differential modifications can be usefully applied to the study of partial reactions of the enzyme and their specific role in the related H+-transport reaction.  相似文献   

14.
1. The adenosine-triphosphatase activity of rat-brain microsomes was measured between 0° and 37°. The stimulatory effect of Na+ plus K+ on the Mg2+-dependent adenosine-triphosphatase activity decreased sharply with decreasing temperature and became negligible at 0°. An Arrhenius plot drawn from the experimental data showed two discontinuities: one at about 6° and the other at about 20°. 2. The increment in activity induced by Na+ plus K+ was more sensitive to oligomycin at lower than at higher temperatures, but the opposite was observed for ouabain. The action of oligomycin showed a biphasic character, since below a certain concentration it caused slight activation of Na+-plus-K+-activated adenosine triphosphatase. 3. Where oligomycin increased the activity of the enzyme, it also enhanced the accumulation of an acid-precipitable phosphorylated compound formed through the transfer of the γ-phosphate group of [32P]ATP to the enzyme system. Stimulatory concentrations of oligomycin did not interfere with K+-mediated dephosphorylation of the intermediate, though high concentrations of oligomycin counteracted the effect of K+. 4. The temperature profile of K+-stimulated microsomal phosphatase qualitatively resembled that of microsomal adenosine triphosphatase.  相似文献   

15.
T K Ray  P C Sen 《Life sciences》1981,28(17):1969-1974
Trypsinization of gastric microsomal K+- stimulated ATPase in absence of ATP nearly abolished the K+- stimulated component of the enzyme activity without any significant effect on the basal (with Mg+2 alone) activity. The K+- stimulated component, however, was completely restored by the ‘activator protein” partially purified form the soluble supernatant fraction of the pig gastric cells. On the other hand, trypsinization of the microsomes in presence of ATP significantly increased (2–3 fold) the basal rate with virtual elimination of the K+- stimulated component. Assay of the trypsinized microsomes in presence of the activator protein not only demonstrated complete restoration of the K+- stimulated ATPase but also revealed an additional activity which has been characterized as a Ca+2- stimulated ATPase.Tryptic digestion has recently been used as a tool to understand the mechanism of action of various transport enzymes such as Na+, K+- ATPase (1), Ca+2- ATPase (2,3) and gastric H+, K+- ATPase (4). Controlled tryptic digestion of purified enzymes under various conditions of ligand binding may provide us with many valuable informations regarding the molecular architecture of the enzyme protein. However, when dealing with a membrane system containing a host of many different intrinsic and extrinsic proteins one must be cautious about the interpretation of the trypsin effects. In the present paper we report the effects of trypsin digestion of the purified pig gastric microsomes on the microsomal K+- stimulated ATPase activity. Our studies demonstrated that digestion of the microsomes with trypsin in absence of ATP inactivated the K+- stimulated ATPase but the activity could be fully restored by the addition of partially purified activator protein (5). Microsomes treated with trypsin in presence of ATP responded to the activator protein to the same extent as that without ATP but in addition demonstrated the manifestation of another enzymatic activity which has been characterized as a Ca+2- stimulated ATPase. This is a preliminary report dealing primarily with the unmasking of a new ATPase after trypsin treatment. Detailed reports on the characterization and mechanism of action of the gastric Ca+2- stimulated ATPase will be published elsewhere.  相似文献   

16.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

17.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in a significant (2–3-fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmaksing of a latent Mg2+-dependent Ca2+-stimulated ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+ and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 μM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 · 10?4M and 10?7 M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed.  相似文献   

18.
Isolated porcine platelet α granules display a Mg2+-stimulated ATPase activity. The enzyme is membrane bound and several criteria suggest that it is intrinsic to the α granules, rather than arising from contamination with other structures. Characterization of the ATPase revealed an apparent Km for ATP of 198 μm. Other nucleotides are also hydrolyzed by the enzyme, though at a slower rate. The enzyme has an absolute requirement for divalent cations, and both Mg2+ (apparent Km 0.93 mm) and Ca2+ (apparent Km 0.95 mm) can activate it. Maximal hydrolysis rates are higher with Mg2+ than with Ca2+. Micromolar Ca2+ in the presence of maximally stimulating Mg2+ concentrations produces a small additional enhancement of activity. The Mg2+ ATPase has a broad activity maximum between pH 6.5 and 8.5, and an activation energy of 11.8 Kcal/mol. Several independent observations suggest that the ATPase could be involved in H+ translocation across the granule membrane: (a) the activity is stimulated upon disrupting membrane continuity by either hypotonic lysis or addition of nondenaturing detergents; (b) proton ionophores enhance the activity in intact but not in disrupted α granules; (c) permeating anions stimulate the ATPase more than slowly permeant or impermeant ones; (d) addition of NH3 (as either NH4Cl or (NH4)2SO4) activates enzyme activity; (e) silicotungstate and disulfonic stilbene derivatives, which are inhibitors of other H+-transporting ATPases, also inhibit the α-granule enzyme. These findings are compared with the reported properties of H+ pumps of other storage and secretory organelles.  相似文献   

19.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

20.
To determine the effect of D-glucose on the β-cell Na+/K+ pump, 86Rb+ influx was studied in isolated, -cell-rich islets of Umeå-ob/ob mice in the absence or presence of lmM ouabain. D-glucose (20 mM) stimulated the ouabain-sensitive portion of 86Rb+ influx by 65%, whereas the ouabain-resistant portion was inhibited by 48%. The Na+/K+ ATPase activity in homogenates of islets of Umeå-ob/ob mice or normal mice was determined to search for direct effects of D-glucose. Thus, ouabain-sensitive ATP hydrolysis in islet homogenates was measured in the presence of different D-glucose concentrations. No effect of D-glucose (3–20 mM) was observed in either ob/ob or normal islets at the optimal Na+/K+ ratio for the enzyme (135 mM Na+ and 20 mM K+). Neither D-glucose (3–20 mM) nor L-glucose or 3-O-methyl-D-glucose (20 mM) affected the enzyme activity at a high Na+/K+ ratio (175 mM Na+ and 0.7mM K+). Diphenylhydantoin (150 μM) decreased the enzyme activity at optimal Na+/K+ ratio, whereas 50 μM of the drug had no effect. The results suggest that D-glucose induces a net stimulation the Na+/K+ pump of β-cells in intact islets and that D-glucose does not exert any direct effect on the Na+/K+ ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号