首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Milk xanthine oxidase was immobilized by covalent attachment to CNBr-activated Sepharose 4B and by adsorption to n-octylamine-substituted Sepharose 4B. The amounts of activity immobilized for the two preparations were 30 and 90%, respectively. The pH optima for free and adsorbed xanthine oxidase were at 8.6 and 8.2, respectively. Both free and immobilized xanthine oxidase show substrate inhibition. The apparent inhibition constant (Ki′) found for adsorbed xanthine oxidase with xanthine as substrate was higher than the Ki for the free enzyme, which was shown to be due to substrate diffusion limitation in the pores of the carrier beads (internal diffusion limitation). Higher substrate concentrations, as desirable for practical application in organic synthesis, can therefore be used with the immobilized enzyme without decreasing the rate. As a result of the internal diffusion limitation the apparent Michaelis constant (Km′) for adsorbed xanthine oxidase was also higher than the Km for the free enzyme. Immobilized xanthine oxidase was more stable than the free enzyme during storage at 4 and 30°C. Both forms rapidly lost activity during catalysis. The loss was proportional to the amount of substrate converted. Coimmobilization of xanthine oxidase with superoxide dismutase and catalase improved the operational stability, suggesting that O2? and H2O2 side-products of the enzymatic reaction were involved in the inactivation. Coimmobilization with albumin also had some stabilizing effect. Complete surrounding of xanthine oxidase by protein, however, by means of etrapment in a glutaraldehyde-crosslinked gelatin matrix, considerably enhanced the operational half-life. This system was less efficient than the Sepharose preparations either because much activity was lost during the immobilization procedure and/or because it had poor flow properties. Xanthine (15 mg)was converted by an adsorbed xanthine oxidase preparation and product (uric acid) was isolated in high yield (84%).  相似文献   

2.
In Canada, environmental regulations for protection of the biota from the adverse effects of effluents from petroleum refineries have tended to focus on acute toxicity. There is concern those effluents may have other subtle, but still deleterious, long-term effects on aquatic ecosystems. We have used a battery of toxicity tests to assess the acute toxicity, genotoxicity, and chronic toxicity of effluent samples from two Ontario refineries. The test organisms included representatives of the bacterial, algal, plant, cladoceran, and fish communities. The results of our preliminary study indicate that the effluent samples had little acute toxicity to the test organisms. There were indications of some sublethal toxicity to Ceriodaphnia dubia, Panagrellus redivivus, and Pimephales promelas. One of the effluents inhibited the growth of Selanastrum capricornutum (IC50 of 59.9%) and Lemna gibba (IC25 of 73.3%) and also caused a 15 percent reduction in the germination of Lactuca sativa seeds. The SOS-Chromotest, a commercially available test that measures the activity of a bacterial DNA repair system, detected genotoxic effects in a single effluent that had been concentrated ten fold. There was no apparent relationship between several chemical parameters and the observed sublethal effects. Further research is needed to establish whether or not the observed toxic effects are typical of effluents from Ontario refineries.  相似文献   

3.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

4.
Abstract

The aim of this study was to determine by static bioassay whether water hardness affects the toxicity of Zn and Cu to a fish, Gambusia holbrooki Girard, 1859. The acute toxicity of selected heavy metals to G. holbrooki was determined in soft, hard and very hard water (25, 125 and 350 mg L?1 as CaCO3). Results showed that water hardness had a significant effect on Cu and on Zn toxicity on fish. Toxicity of Cu and of Zn increased with decreasing water hardness. The 96 hours LC50 values for G. holbrooki were higher in the hard and very hard water compared with soft water. Water hardness had a much smaller effect upon the acute toxicity of Cu than that of Zn. It was observed that the 96 hours LC50 for Cu at the soft, hard and very hard water was found to be 0.017, 0.17 and 0.65 mg L?1, respectively, while the 96 hours LC50 for Zn at the soft, hard and very hard water was found to be 0.46, 48.1 and 121.6 mg L?1, respectively.  相似文献   

5.
Vanadium compounds are known to lower blood glucose level in diabetes but are associated with toxicity. In vitro cytotoxicity of VOSO4 and bis(quercetinato) oxovanadium(IV) (BQOV) was examined in CHO cells. Both the agents showed time and dose dependent increase in ROS generation however it was relatively less in BQOV. Moreover, VOSO4 also caused higher necrosis. Hypoglycemic potential of VOSO4 and BQOV was tested in streptozotocin-induced diabetic Balb/c mice. A marked difference was observed in the hypoglycemic action of VOSO4 and BQOV treated mice that lasted only for about 6 h in VOSO4 as against 24 h in BQOV. Comparison of acute toxicity of the compounds in normal Balb/c mice revealed negligible nephrotoxicity of BQOV. Kidney analyses of VOSO4 treated animals’ revealed high ROS generation and tubular necrosis. Similarly serum levels of urea and creatinine were elevated in these animals indicating kidney dysfunction. No such abnormality was observed in BQOV treated animals. Reduced nephrotoxicity of BQOV could be due to increased catalase activity found in the kidney of BQOV treated animals and BQOV’s radical scavenging activity. The data clearly demonstrates immense hypoglycemic activity and reduced toxicity of BQOV thus making the conjugate a suitable candidate for therapeutic utility.  相似文献   

6.
Chiral fungicide prothioconazole has a wide range of antifungal spectrum; however, little research has been conducted to evaluate prothioconazole on an enantiomeric level. Five target pathogens and three common aquatic organisms were tested for the enantioselective bioactivity and toxicity of prothioconazole in this work. The antifungal activity of the enantiomers against wheat phytoalexin, rice blast fungus, exserohilum turcicum, Alternaria triticina, and Fusarium avenaceum was determined, and it was found that (?)‐prothioconazole were 85 to 2768 times more active than (+)‐prothioconazole toward these target organisms. In order to reflect the risk to aquatic ecosystem, the acute toxicity of the enantiomers to Daphnia magna, Chlorella pyrenoidosa, and Lemna minor L. was assessed. It was observed that the toxicity of (?)‐prothioconazole to D. magna was 2.2 times higher than (+)‐prothioconazole, but it was lower to C. pyrenoidosa and L. minor L. The toxicities of (+)‐enantiomer and (?)‐enantiomer to D. magna and C. pyrenoidosa were synergy, indicating that the racemate had higher threat to the organisms. It could be concluded that the effects of prothioconazole on target organisms and the acute toxicity to nontarget species were enantioselective with (?)‐enantiomer possessing higher efficiency and lower toxicity. Such enantiomeric differences should be taken into consideration when assessing the performance of prothioconazole.  相似文献   

7.
With the aim of increasing the rumen-protected level of the sulphur amino acids cysteine and methionine in Trifolium repens, we introduced the coding sequence of the sunflower seed albumin (SSA) into T. repens by Agrobacterium tumefaciens-mediated transformation. The SSA gene was modified such that the protein would be localised to the endoplasmic reticulum (ER). Four different T-DNA constructions all containing the SSA gene driven by either the promoter of a gene encoding the small subunit of ribulose bisphosphate carboxylase (Rubisco) from Arabidopsis thaliana (A ssu), the promoter of the gene encoding the small subunit of Rubisco of Medicago sativa (L ssu), or the Cauliflower Mosaic Virus 35S promoter (CaMV35S), were transferred to T. repens cv. Haifa. Transgenic T 0-plants and inter-transgenic hybrids were analysed for the level of SSA accumulation in the leaves by western blotting. The highest observed level of SSA accumulation was 0.1% of total extractable leaf protein. We observed that the promoter had a substantive effect on the level of SSA accumulation with A ssu>CaMV35S>L ssu. Results from the inter-transgenic hybrids showed that the capacity to synthesise SSA was inherited. However the level of SSA accumulation in the leaves generally appears not to be additive with extra transgenic loci. During this work, we attempted to improve the efficiency of A. tumefaciens-mediated transformation of T. repens using the SAAT-method (Sonication Assisted Agrobacterium-mediated Transformation) on cotyledons of T. repens. T-DNA transfer was in general not enhanced by sonication compared to traditional A. tumefaciens-mediated transformation. Furthermore, Southern blot analyses of plants regenerated from the same cotyledon after A. tumefaciens treatment and under selection, indicated that multiple shoots were usually derived from the same transformation event. We concluded from these results that only one plant from each A. tumefaciens-treated cotyledon should be taken to avoid transgenic clones.  相似文献   

8.
Isoniazid (INH) resistance of the Mycobacterium tuberculosis Complex (MtbC) is associated with both loss of catalase activity and mutation of the inhA gene. However, the relative contributions of these changes to resistance and to the loss of virulence for guinea-pigs is unknown. In this study, a virulent strain of Mycobacterium bovis, a member of the MtbC., was exposed to increasing concentrations of INH. Two INH-resistant strains were produced which had lost catalase activity. Strain WAg405, which had a higher resistance to INH, also had a mutation in the inhA gene. This demonstrated that loss of catalase activity and mutation of inhA had a cumulative effect on INH resistance. When a functional katG gene was integrated into the genome of WAg405 the INH resistance was greatly reduced. This indicated that most of the resistance had been caused by loss of catalase activity. While the parent INH-sensitive strain was virulent for guinea-pigs, the INH-resistant strains were significantly less virulent. Integration of a functional katG gene into the most resistant strain restored full virulence. This clearly established that katG is a virulence factor for M. bovis and that mutation of the inhA gene has no effect on virulence.  相似文献   

9.
This project studied in detail the insecticidal activity of a fungal lectin from the sclerotes of Sclerotinia sclerotiorum, referred to as S. sclerotiorum agglutinin or SSA. Feeding assays with the pea aphid (Acyrthosiphon pisum) on an artificial diet containing different concentrations of SSA demonstrated a high mortality caused by this fungal lectin with a median insect toxicity value (LC50) of 66 (49–88) μg/ml. In an attempt to unravel the mode of action of SSA the binding and interaction of the lectin with insect tissues and cells were investigated. Histofluorescence studies on sections from aphids fed on an artificial liquid diet containing FITC-labeled SSA, indicated the insect midgut with its brush border zone as the primary target for SSA. In addition, exposure of insect midgut CF-203 cells to 25 μg/ml SSA resulted in a total loss of cell viability, the median cell toxicity value (EC50) being 4.0 (2.4–6.7) μg/ml. Interestingly, cell death was accompanied with DNA fragmentation, but the effect was caspase-3 independent. Analyses using fluorescence confocal microscopy demonstrated that FITC-labeled SSA was not internalized in the insect midgut cells, but bound to the cell surface. Prior incubation of the cells with saponin to achieve a higher cell membrane permeation resulted in an increased internalization of SSA in the insect midgut cells, but no increase in cell toxicity. Furthermore, since the toxicity of SSA for CF-203 cells was significantly reduced when SSA was incubated with GalNAc and asialomucin prior to treatment of the cells, the data of this project provide strong evidence that SSA binds with specific carbohydrate moieties on the cell membrane proteins to start a signaling transduction cascade leading to death of the midgut epithelial cells, which in turn results in insect mortality. The potential use of SSA in insect control is discussed.  相似文献   

10.
The effects of different treatments of salicylic acid (SA) on lipid peroxidation, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. were studied before heat stress treatment, 36 h after heat stress and 24 h after recovery. Compared with the controls (foliar spray of distilled water), a foliar spray of 1 mM SA (SSA treatment) decreased electrolyte leakage and the concentration of H2O2 and thiobarbituric acid reactive substances (TBARS). SSA treatment also enhanced maximum yield of photosystem II photochemical reactions (Fv/Fm) and the quantum yield of the photosystem II electron transport (ΦPSII) after both heat stress and recovery; however, adding 1 mM SA to the nutrient solution (ASA treatment) or both adding 1 mM SA to the nutrient solution and foliar spray of 1 mM SA as well (SSA + ASA treatment) had the opposite effects. SOD activity was stimulated by all SA treatments. CAT activity was stimulated by SSA treatment and inhibited by ASA and SSA + ASA treatments after heat stress and recovery. This suggest that SSA treatment can efficiently remove H2O2 and decrease heat stress, and CAT plays a key role in removing H2O2 in cucumber seedlings under heat stress, while more H2O2 accumulates in ASA and SSA + ASA treatments and therefore induces serious oxidative stress. GPX, APX and GR showed higher activities in all SA treatments under heat stress, however, it appears that they were not key enzymes in removing H2O2 in cucumber subject to heat stress.  相似文献   

11.
12.
Isonicotinic acid hydrazide (INH), an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine and CO2, has been used as a selective agent to obtain INH-resistant tobacco (Nicotiana tabacum) callus cells. Of 22 cell lines that were INH-resistant, none were different from wild-type cells in their ability to take up [3H]INH or to oxidize INH to isonicotinic acid. In 7 of the 22 cell lines, INH resistance was associated with decreased inhibition of NAD-dependent glycine decarboxylation activity in isolated mitochondrial preparations. In the cell line that was most extensively investigated (I 24), this biochemical phenotype (exhibiting a 3-fold higher Ki with INH) was observed in leaf mitochondria of regenerated plants and of plants produced from them by self-fertilization. After crosses between resistant and sensitive plants, the decreased inhibition of glycine decarboxylation was observed among F2 and backcross progeny only in those plants previously identified as INH-resistant by callus growth tests. In contrast, in siblings identified as INH-sensitive, glycine decarboxylation was inhibited by INH at the wild-type level. This demonstration of the transfer of an altered enzyme property from callus to regenerated plants and through seed progeny fulfills an important requirement for the use of somatic cell genetics to produce biochemical mutants of higher plants.  相似文献   

13.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

14.
Mycobacterium tuberculosis catalase‐peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro‐drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid‐NADH adduct that ultimately confers anti‐tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG‐derived INH‐resistance, we have compared the catalytic properties (including the ability to form the INH‐NADH adduct) of the wild‐type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met‐Tyr‐Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance‐conferring mutants were then assayed for their ability to generate the INH‐NADH adduct in the presence of peroxide (t‐BuOOH and H2O2), superoxide, and no exogenous oxidant (air‐only background control). The results demonstrate that residue location plays a critical role in determining INH‐resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant‐specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH‐resistance that is not correlated with the formation of the INH‐NADH adduct.  相似文献   

15.
The influence of adsorption on cadmium toxicity to soil microorganisms in soils was quantified as a function of solution and sorbent characteristics. The influence of adsorption on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. The sequence of relative percentage of FDA hydrolysis was reference smectite (RS) > untreated Vertisol (UV) > dithionate-citrate-bicarbonate (DCB)-treated Vertisol (DV) > H2O2-treated Vertisol (HV) in suspensions containing the same total Cd concentrations. The correlation between the percentage of FDA hydrolysis and activity of Cd2+ (aq) illustrates that RS has a higher capacity of Cd adsorption. The microbial activity of RS was higher and the toxicity was lower than that of other soil samples. The HV had lower capacity of Cd adsorption so that its FDA hydrolysis was low and the Cd toxicity was high.  相似文献   

16.
The flavonoids are mainly present in Citrus fruits as their glycosyl derivatives. This study was conducted comparing in vitro xanthine oxidase inhibitory activity of the aglycone hesperetin and its glycosylated forms (hesperidin and G‐hesperidin) and their effects on the plasma lipid profile and the oxidative–antioxidative system (TBARS and antioxidant enzymes) in rats. The concentrations of the major conjugated metabolites in rat plasma after oral administration of these compounds were also determined. Wistar male rats were randomly assigned to three groups (n = 6) supplemented for 30 days with 1 mmol/kg body mass of hesperetin, hesperidin or G‐hesperidin. Hesperetin was a stronger xanthine oxidase inhibitor (IC50 = 53 μM and Ki = 17.3 μM) than the glycosylate derivatives. Supplementation with the three compounds led to a lower (more favorable) atherogenic index, and an antioxidant preventive effect from the increase of hepatic superoxide dismutase was observed associated to HT supplementation, possibly because of the higher level of hesperetin‐glucuronide in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Deposition of ammonium (NH4+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4+ is well studied, little is known about how shoot‐supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin‐responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN‐FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1‐dependent auxin transport from shoot to root.  相似文献   

18.
Tilapia species and their hybrids had Mo2 s between 44.4 and 84.2 mg kg-0.8d-1 at comparable temperatures. With one exception (O. aureus times S. galilaeus), the standard metabolic rate (SMR) tended to be higher than that of the purebred species. The scope for spontaneous activity (SSA) was a good measure of the energy available to the fish for body tissue synthesis. Using the amount of oxygen that is consumed above standard needs (SMR), theoretical growth potentials of 9.0 to 27.3 g kg-0.8d-1 were derived. It is concluded that SSA may be used for selection of species for aquaculture.  相似文献   

19.
This study aimed to investigate the protective effects of arbutin (ARB) against brain injury induced in rats with potassium bromate (KBrO3). The rats were divided into four groups as Group 1: Control (0.9% NaCl ml/kg/day p.), Group 2: KBrO3 (100 mg/kg (gavage), Group 3: ARB (50 mg/kg/day p.), and Group 4: KBrO3 + ARB (100 mg/kg (gavage) + 50 mg/kg/day p.). At the end of the fifth day of the study, the rats in all groups were killed, and their brain tissues were collected. In the collected brain tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were measured, and routine histopathological examinations were made. The MDA levels in the group that was exposed to KBrO3 were significantly higher than those in the control group (p ˂ 0.001). In comparison to the KBrO3 group, the MDA levels in the KBrO3 + ARB group were significantly lower (p ˂ 0.001). It was observed that SOD and CAT enzyme activity levels were significantly lower in the KBrO3 group compared to the control group (p ˂ 0.001), while these levels were significantly higher in the KBrO3 + ARB group than in the KBrO3 group (p ˂ 0.001). Additionally, the group that was subjected to KBrO3 toxicity, as well as ARB administration, had much lower levels of histopathologic signs than the group that was subjected to KBrO3 toxicity only. Consequently, it was found that KBrO3 exposure led to injury in the brain tissues of the rats, and using ARB was effective in preventing this injury.  相似文献   

20.
Hyperuricemia is defined as a metabolic abnormality that occurs when serum uric acid (UA) level is abnormally high in the body. We previously reported that A. longiloba possesses various important phytochemicals and in vitro xanthine oxidase activity. Despite A. longiloba ethnomedicinal benefits, its toxicity and anti-hyperuricemic effects have not been reported. The present study was carried out to ensure the safety and investigate the anti-hyperuricemic effects of A. longiloba fruit and petiole ethanolic extracts on rats. In the acute toxicity study, extracts were orally administered at a dose of 2000 mg/kg bodyweight and closely monitored for 2-week for any toxicity effects. The rats were then sacrificed and samples were collected and analyzed for hematological, biochemical, and histopathological parameters. The anti-hyperuricemic effect of A. longiloba fruit or petiole extract was investigated through determination of UA levels on potassium oxonate (PO)-induced hyperuricemic rats. Extracts or standard drug treatments were orally administrated 1-h after PO administration for 14-day. Animals were euthanized and samples were collected for further experiments. The toxicity results show, no significant changes were observed in behavioral, bodyweight changes in experimental groups compared to the control. Moreover, there were no significant changes in hematological, biochemical, and histological parameters between extracts treated and control group. In the anti-hyperuricemia study, the fruit and petiole extracts treatments significantly reduced the level of UA in serum compared to the hyperuricemic model group. This study demonstrated that the extracts of A. longiloba have anti-hyperuricemic activity and was found to be non-toxic to rats in acute toxicity test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号