首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis   总被引:1,自引:0,他引:1  
A subcomplex of F0F1-ATP synthase (F0F1), alpha3beta3gamma, was shown to undergo the conformation(s) during ATP hydrolysis in which two of the three beta subunits have the "Closed" conformation simultaneously (CC conformation) [S.P. Tsunoda, E. Muneyuki, T. Amano, M. Yoshida, H. Noji, Cross-linking of two beta subunits in the closed conformation in F1-ATPase, J. Biol. Chem. 274 (1999) 5701-5706]. This was examined by the inter-subunit disulfide cross-linking between two mutant beta(I386C)s that was formed readily only when the enzyme was in the CC conformation. Here, we adopted the same method for the holoenzyme F0F1 from Bacillus PS3 and found that the CC conformation was generated during ATP hydrolysis but barely during ATP synthesis. The experiments using F0F1 with the epsilon subunit lacking C-terminal helices further suggest that this difference is related to dynamic nature of the epsilon subunit and that ATP synthesis is accelerated when it takes the pathway involving the CC conformation.  相似文献   

3.
The SH-groups in Escherichia coli membrane vesicles, prepared from cells grown in fermentation conditions on glucose at slightly alkaline pH, have a role in the F0F1-ATPase operation. The changes in the number of these groups by ATP are observed under certain conditions. In this study, copper ions (Cu2+) in concentration of 0.1 mM were shown to increase the number of SH-groups in 1.5- to 1.6-fold independent from K+ ions, and the suppression of the increased level of SH-groups by ATP was determined for Cu2+ in the presence of K+. Moreover, the increase in the number of SH-groups by Cu2+ was absent as well as the inhibition in ATP-dependent increasing SH-groups number by Cu2+ lacked when vesicles were treated with N-ethylmaleimide (NEM), specific thiol-reagent. Such an effect was not observed with zinc (Zn2+), cobalt (Co2+), or Cu+ ions. The increased level of SH-groups was observed in the hycE or hyfR mutants with defects in hydrogenases 3 or 4, whereas the ATP-dependent increase in the number of these groups was determined in hycE not in hyfR mutants. Both changes in SH-groups number disappeared in the atp or hyc mutants deleted for the F0F1-ATPase or hydrogenase 3 (no activity of hydrogenase 4 was detected in the hyc mutant used). A direct effect of Cu2+ but not Cu+ on the F0F1-ATPase is suggested to lead to conformational changes or damaging consequences, increasing accessible SH-groups number and disturbing disulfide-dithiol interchange within a protein-protein complex, where this ATPase works with K+ uptake system or hydrogenase 4 (Hyd-4); breaks in disulfides are not ruled out.  相似文献   

4.
The isolated epsilon subunit of F(1)-ATPase from thermophilic Bacillus PS3 (TF(1)) binds ATP [Y. Kato-Yamada, M. Yoshida, J. Biol. Chem. 278 (2003) 36013]. The obvious question is whether the ATP binding concern with the regulation of ATP synthase activity or not. If so, the epsilon subunit even in the ATP synthase complex should have the ability to bind ATP. To check if the ATP binding to the epsilon subunit within the ATP synthase complex may occur, the gammaepsilon sub-complex of TF(1) was prepared and ATP binding was examined. The results clearly showed that the gammaepsilon sub-complex can bind ATP.  相似文献   

5.
An extremely small reaction chamber with a volume of a few femtoliters was developed for a highly sensitive detection of biological reaction. By encapsulating a single F(1)-ATPase (F(1)) molecule with ADP and an inorganic phosphate in the chamber, the chemomechanical coupling efficiency of ATP synthesis catalyzed by reversely rotated F(1) was successfully determined (Rondelez et al., 2005a, Nature, 444, 773-777). While the alpha3beta3gamma subcomplex of F(1) generated ATP with a low efficiency (approximately 10%), inclusion of the epsilon subunit into the subcomplex enhanced the efficiency up to 77%. This raises a new question about the mechanism of F(0)F(1)-ATP synthase (F(0)F(1)): How does the epsilon subunit support the highly coupled ATP synthesis of F(1)? To address this question, we measured the conformational dynamics of the epsilon subunit using fluorescence resonance energy transfer (FRET) at the single-molecule level. The experimental data revealed epsilon changes the conformation of its C-terminus helices in a nucleotide-dependent manner. It is plausible that the conformational change of epsilon switches the catalytic mode of F(0)F(1) for highly coupled ATP synthesis.  相似文献   

6.
7.
The number of accessible SH-groups was determined in membrane vesicles prepared from Escherichia coli growing in fermentation conditions at slightly alkaline pH on glucose with or without added formate. Addition of ATP or formate to the vesicles caused a approximately 1.4-fold increase in the number of accessible SH-groups. The increase was inhibited by treatment with N-ethylmaleimide or the presence of the F(0)F(1)-ATPase inhibitors N,N(')-dicyclohexylcarbodiimide or sodium azide. The increase in accessible SH-groups was also absent in strains with the ATP synthase operon deleted or with the single F(0) domain cysteine Cysb21 changed to Ala. Using hyc and hyf mutants, it was shown that the increase was also largely dependent on hydrogenase 4 or hydrogenase 3, main components of formate hydrogen lyase, when bacteria were grown in the absence or presence of added formate. These results suggest a relationship between the F(0)F(1)-ATP synthase and hydrogenase 4 or hydrogenase 3 under fermentation conditions.  相似文献   

8.
Large areas of northern China have alkaline soil due to the accumulation of sodium carbonates (NaHCO3, Na2CO3). To understand better how plants can tolerate alkaline soil, a cDNA library was prepared from rice (Oryza sativa L.) roots grown in the presence of NaHCO3 stress. A cDNA clone isolated from this library was identified by a homology search as a mitochondrial ATP synthase 6 kDa subunit gene (RMtATP6; GenBank accession nos AB055076, BAB21526). In transformed yeast and tobacco protoplasts, the RMtATP6 protein was localized in mitochondria using the green fluorescent protein (GFP) marker. Analysis of RMtATP6 mRNA levels suggested that the expression of this gene was induced by stress from sodium carbonates and other sodium salts. Transgenic tobacco overexpressing the RMtATP6 gene had greater tolerance to salt stress at the seedling stage than untransformed tobacco. Among the other genes for F1F0-ATPase of rice, some were found to be up-regulated by some environmental stresses and some were not. These data suggest that the RMtATP6 protein acts as a subunit of ATP synthase, and is expressed in response to stress from several salts, with the other genes coding for the subunits of the same ATP-synthase.  相似文献   

9.
The nucleotide sequences of the genes encoding the F1F0-ATPase beta-subunit from Oenococcus oeni, Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus damnosus, Pediococcus parvulus, Lactobacillus brevis and Lactobacillus hilgardii were determined. Their deduced amino acid sequences showed homology values of 79-98%. Data from the alignment and ATPase tree indicated that O. oeni and L. mesenteroides subsp. mesenteroides formed a group well-separated from P. damnosus and P. parvulus and from the group comprises L. brevis and L. hilgardii. The N-terminus of the F1F0-ATPase beta-subunit of O. oeni contains a stretch of additional 38 amino acid residues. The catalytic site of the ATPase beta-subunit of the investigated strains is characterized by the two conserved motifs GGAGVGKT and GERTRE. The amplified atpD coding sequences were inserted into the pCRT7/CT-TOPO vector using TA-cloning strategy and transformed in Escherichia coli. SDS-PAGE and Western blot analyses confirmed that O. oeni has an ATPase beta-subunit protein which is larger in size than the corresponding molecules from the investigated strains.  相似文献   

10.
An intrinsic ATPase inhibitor inhibits the ATP-hydrolyzing activity of mitochondrial F1F0-ATPase and is released from its binding site on the enzyme upon energization of mitochondrial membranes to allow phosphorylation of ADP. The mitochondrial activity to synthesize ATP is not influenced by the absence of the inhibitor protein. The enzyme activity to hydrolyze ATP is induced by dissipation of the membrane potential in the absence of the inhibitor. Thus, the inhibitor is not responsible for oxidative phosphorylation, but acts only to inhibit ATP hydrolysis by F1F0-ATPase upon deenergization of mitochondrial membranes. The inhibitor protein forms a regulatory complex with two stabilizing factors, 9K and 15K proteins, which facilitate the binding of the inhibitor to F1F0-ATPase and stabilize the resultant inactivated enzyme. The 9K protein, having a sequence very similar to the inhibitor, binds directly to F1 in a manner similar to the inhibitor. The 15K protein binds to the F0 part and holds the inhibitor and the 9K protein on F1F0-ATPase even when one of them is detached from the F1 part.  相似文献   

11.
A method is described for the purification of rat liver F1-ATPase by a modification of the chloroform extraction procedure originally described by Beechey et al. (Biochem. J. (1975) 148, 533). Purified liver membrane vesicles are extracted with chloroform in the presence of ATP and EDTA. The procedure yields pure F1 in only 2-3 h without the necessity of ion-exchange chromatography. The enzyme exhibits the alpha, beta, gamma, delta, and epsilon bands characteristic of F1-ATPase. It has a high ATPase specific activity, and is reconstitutively active, catalyzing high rates of ATP synthesis. Significantly, it can be readily crystallized. If desired, the enzyme can be passed over a gel filtration column to place it in a stabilizing phosphate-EDTA buffer, lyophilized and stored indefinitely at -20 degrees C.  相似文献   

12.
In order to observe mechanically driven proton flux in F(0)F(1)-ATPase coupled with artificial driven rotation on F(1) simultaneously, a double channel observation system was established. An artificial delta-free F(0)F(1)-ATPase was constructed with alpha(3), beta(3), epsilon, gamma, and c(n) subunits as rotator and a, b(2) as stator. The chromatophore was immobilized on the glass surface through biotin-streptavidin-biotin system, and the magnetic bead was attached to the beta subunit of delta-free F(0)F(1)-ATPase. The mechanically driven proton flux was indicated by the fluorescence intensity change of fluorescein reference standard (F1300) and recorded by a cooled digital CCD camera. The mechanochemical coupling stoichiometry between F(0) and F(1) is about 4.15 +/- 0.2H(+)/rev when the magnetic field rotated at 0.33 Hz (rps).  相似文献   

13.
Kato-Yamada Y 《FEBS letters》2005,579(30):6875-6878
Previously, we demonstrated ATP binding to the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus PS3 [Kato-Yamada Y., Yoshida M. (2003) J. Biol. Chem. 278, 36013]. However, whether it is a general feature of the epsilon subunit from other sources is yet unclear. Here, using a sensitive method to detect weak interactions between fluorescently labeled epsilon subunit and nucleotide, it was shown that the epsilon subunit of F1-ATPase from Bacillus subtilis also bound ATP. The dissociation constant for ATP binding at room temperature was calculated to be 2 mM, which may be suitable for sensing cellular ATP concentration in vivo.  相似文献   

14.
The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride at 2.0 angstroms resolution contains two ADP.BeF3- complexes mimicking ATP, bound in the catalytic sites of the beta(TP) and beta(DP) subunits. Except for a 1 angstrom shift in the guanidinium of alphaArg373, the conformations of catalytic side chains are very similar in both sites. However, the ordered water molecule that carries out nucleophilic attack on the gamma-phosphate of ATP during hydrolysis is 2.6 angstroms from the beryllium in the beta(DP) subunit and 3.8 angstroms away in the beta(TP) subunit, strongly indicating that the beta(DP) subunit is the catalytically active conformation. In the structure of F1-ATPase with five bound ADP molecules (three in alpha-subunits, one each in the beta(TP) and beta(DP) subunits), which has also been determined, the conformation of alphaArg373 suggests that it senses the presence (or absence) of the gamma-phosphate of ATP. Two catalytic schemes are discussed concerning the various structures of bovine F1-ATPase.  相似文献   

15.
Summary The atp operon from the extreme alkaliphile Bacillus firmus OF4 was cloned and sequenced, and shown to contain genes for the eight structural subunits of the ATP synthase, preceded by a ninth gene predicted to encode a 14 kDa hydrophobic protein. The arrangement of genes is identical to that of the atp operons from Escherichia coli, Bacillus megaterium, and thermophilic Bacillus PS3. The deduced amino acid sequences of the subunits of the enzyme are also similar to their homologs in other ATP synthases, except for several unusual substitutions, particularly in the a and c subunits. These substitutions are in domains that have been implicated in the mechanism of proton translocation through F0-ATPase, and therefore could contribute to the gating properties of the alkaliphile ATP synthase or its capacity for proton capture.  相似文献   

16.
17.
The ATPase activity of chloroplast and bacterial F(1)-ATPase is strongly inhibited by both the endogenous inhibitor ε and tightly bound ADP. Although the physiological significance of these inhibitory mechanisms is not very well known for the membrane-bound F(0)F(1), these are very likely to be important in avoiding the futile ATP hydrolysis reaction and ensuring efficient ATP synthesis in vivo. In a previous study using the α(3)β(3)γ complex of F(1) obtained from the thermophilic cyanobacteria, Thermosynechococcus elongatus BP-1, we succeeded in determining the discrete stop position, ~80° forward from the pause position for ATP binding, caused by ε-induced inhibition (ε-inhibition) during γ rotation (Konno, H., Murakami-Fuse, T., Fujii, F., Koyama, F., Ueoka-Nakanishi, H., Pack, C. G., Kinjo, M., and Hisabori, T. (2006) EMBO J. 25, 4596-4604). Because γ in ADP-inhibited F(1) also pauses at the same position, ADP-induced inhibition (ADP-inhibition) was assumed to be linked to ε-inhibition. However, ADP-inhibition and ε-inhibition should be independent phenomena from each other because the ATPase core complex, α(3)β(3)γ, also lapses into the ADP-inhibition state. By way of thorough biophysical and biochemical analyses, we determined that the ε subunit inhibition mechanism does not directly correlate with ADP-inhibition. We suggest here that the cyanobacterial ATP synthase ε subunit carries out an important regulatory role in acting as an independent "braking system" for the physiologically unfavorable ATP hydrolysis reaction.  相似文献   

18.
19.
Mitochondrial ATP synthase (F1F0-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In this study, we overexpressed and purified human and bovine ATPase inhibitors and their properties were compared with those of a yeast inhibitor. The human and bovine inhibitors inhibited bovine ATPase in a similar way. The yeast inhibitor also inhibited bovine F1F0-ATPase, although the activity was about three times lower than the mammalian inhibitors. All three inhibitors inhibited yeast F1F0-ATPase in a similar way. The activities of all inhibitors decreased at higher pH, but the magnitude of the decrease was different for each combination of inhibitor and ATPase. The results obtained in this study show that the inhibitory mechanism of the inhibitors was basically shared in yeast and mammals, but that mammalian inhibitors require unique residues, which are lacking in the yeast inhibitor, for their maximum inhibitory activity. Common inhibitory sites of mammalian and yeast inhibitors are suggested.  相似文献   

20.
The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now demonstrate that the insertion of in vitro-synthesized F1F0 ATP synthase subunit c (F0c) into inner membrane vesicles requires YidC. Insertion is independent of the proton motive force, and proteoliposomes containing only YidC catalyze the membrane insertion of F0c in its native transmembrane topology whereupon it assembles into large oligomers. Co-reconstituted SecYEG has no significant effect on the insertion efficiency. Remarkably, signal recognition particle and its membrane-bound receptor FtsY are not required for the membrane insertion of F0c. In conclusion, a novel membrane protein insertion pathway in E. coli is described in which YidC plays an exclusive role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号