首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The malic enzyme enriched from Acinetobacter calcoaceticus is inhibited by NADPH and NADH. The inhibition afforded by the reduced coenzymes is not affected by NAD+, AMP and 3'.5'-AMP. Against L-malate, NADPH inhibits the enzyme in a noncompetitive linear fashion (Ki = 1.5 x 10(-4) M), against NADP+, competitively linearly (Ki = 5.0 x 10(-5) M). While NADPH acted as a product inhibitor, NADH seems to be an allosteric effector of the malic enzyme, because with L-malate as the variable substrate in the double reciprocal plot, a nonlinear curve is obtained.  相似文献   

2.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

3.
Hexose-6-phosphate dehydrogenase (refers to hexose-6-phosphate dehydrogenase from any species in general) has been purified to apparent homogeneity from the teleost fish Fundulus heteroclitus. The enzyme was characterized for native (210 kDa) and subunit molecular mass (54 kDa), isoelectric point (6.65), amino acid composition, substrate specificity, and metal dependence. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucose 6-sulfate, glucosamine 6-phosphate, and glucose were found to be substrates in the reaction with NADP+, but only glucose was a substrate when NAD+ was used as coenzyme. A unique reaction mechanism for the forward direction was found for this enzyme when glucose 6-phosphate and NADP+ were used as substrates; ordered with glucose 6-phosphate binding first. NAD+ was found to be a competitive inhibitor toward NADP+ and an uncompetitive inhibitor with regard to glucose 6-phosphate in this reaction; Vmax = 7.56 mumol/min/mg, Km(NADP+) = 1.62 microM, Km(glucose 6-phosphate) = 7.29 microM, Kia(glucose 6-phosphate) = 8.66 microM, and Ki(NAD+) = 0.49 microM. The use of alternative substrates confirmed this result. This type of reaction mechanism has not been previously reported for a dehydrogenase.  相似文献   

4.
The ability of a microsomal enzyme, glucose dehydrogenase (hexose 6-phosphate dehydrogenease) to supply NADPH to the microsomal electron transport system, was investigated. Microsomes could perform oxidative demethylation of aminopyrine using microsomal glucose dehydrogenase in situ as an NADPH generator. This demethylation reaction had apparent Km values of 2.61 X 10(-5) M for NADP+, 4.93 X 10(-5) m for glucose 6-phosphate, and 2.14 X 10(-4) m for 2-deoxyglucose 6-phosphate, a synthetic substrate for glucose dehydrogenase. Phenobarbital treatment enhanced this demethylation activity more markedly than glucose dehydrogenase activity itself. Latent activity of glucose dehydrogenase in intact microsomes could be detected by using inhibitors of microsomal electron transport, i.e. carbon monoxide and p-chloromercuribenzoate (PCMB), and under anaerobic conditions. These observations indicate that in microsomes the NADPH generated by glucose dehydrogenase is immediately oxidized by NADPH-cytochrome c reductase, and that glucose dehydrogenase may be functioning to supply NADPH.  相似文献   

5.
A method is described which enables one to assay simultaneously the NAD- and NADP-linked reactions of dehydrogenases which can utilize both coenzymes. The method is based on the fact that the thionicotinamide analogs of NADH and NADPH absorb light maximally at 400 nm, a wavelength sufficiently far removed from the absorbance maximum of NADH and NADPH to permit measurements of the simultaneous reduction of NAD+ (or NADP+) and the thionicotinamide analog of NADP+ (or NAD+). Application of the method to glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides reveals differential effects of glucose 6-phosphate concentration on the NAD- and NADP-linked reactions catalyzed by this enzyme which can not be detected by conventional assay procedures and which may have regulatory significance.  相似文献   

6.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

7.
Abstract Extracts from the obligate methylotroph Methylobacillus flagellatum KT and its temperature-sensitive (ts) glucose 6-phosphate dehydrogenase (GPD) mutants were analysed by electrophoresis, isoelectrofocusing and chromatography methods. GPD is present in two forms differing in the isoelectric point (IEP) values, but identical in other properties. Both forms are specific to NAD and NADP, have similar affinity to substrates, exhibit equal levels of inhibition by NAD(P)H and ATP and have the same dependence of activity on temperature. The synthesis of both forms is controlled by one gene. 6-phosphogluconate dehydrogenase (GND) is represented by two proteins with different IEP values. One is specific both to NAD and NADP, is stable and inhibited by NADH and NADPH to a similar extent. The second is specific to NAD only, unstable and inhibited by NADH to a greater extent than by NADPH.  相似文献   

8.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

9.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

10.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

11.
The effects of coenzymes NAD(P) and NAD(P)H on the kinetics of the ox liver glutamate dehydrogenase reaction have been studied. The oxidized coenzymes were shown to activate alpha-ketoglutarate amination at inhibiting concentrations of NADH and NADPH. The reduced coenzymes, NADH and NADPH, inhibit glutamate deamination with both NAD and NADP as coenzymes. The data obtained are discussed in terms of literature data on the mechanisms of the coenzyme effects on the glutamate dehydrogenase activity and are inconsistent with the theory of direct ligand--ligand interactions. It was shown that the peculiarities of the glutamate dehydrogenase kinetics can easily be interpreted in the light of the two state models.  相似文献   

12.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is inactivated by trypsin, chymotrypsin, pronase E, thermolysin, 4.0 M urea, and by heating to 49 degrees C. It is protected, to varying degrees, against all these forms of inactivation by glucose 6-phosphate, NAD+, and NADP+. When these ligands are present at 10 times their respective KD concentrations, protection by NAD+ or glucose 6-phosphate is substantially greater than protection by NADP+. A detailed analysis was undertaken of the protective effects of these ligands, at varying concentrations, on proteolysis of glucose-6-phosphate dehydrogenase by thermolysin. This study confirmed the above conclusion and permitted calculation of KD values for NAD+, NADP+, and glucose 6-phosphate that agree with such values determined by independent means. For NADP+, two KD values, 6.1 microM and 8.0 mM, can be derived, associated with protection against thermolysin by low and high NADP+ concentrations, respectively. The former value is in agreement with other determinations of KD and the latter value appears to represent binding of NADP+ to a second site which causes inhibition of catalysis. A Ki value of 10.5 mM for NADP+ was derived from inhibition studies. The principal conclusion from these studies is that NAD+ binding to L. mesenteroides glucose-6-phosphate dehydrogenase results in a larger global conformational change of the enzyme than does NADP+ binding. Presumably, a substantially larger proportion of the free energy of binding of NAD+, compared to NADP+, is used to alter the enzyme's conformation, as reflected in a much higher KD value. This may play an important role in enabling this dual nucleotide-specific dehydrogenase to accommodate either NAD+ or NADP+ at the same binding site.  相似文献   

13.
Glucose-6-phosphate dehydrogenase from Streptomyces aureofaciens exhibited activity with both NAD and NADP, the maximum reaction rate being 1.6 times higher for NAD-linked activity than for the NADP-linked one. The KM values for NAD-linked activity were 2.5 mM for glucose-6-phosphate and 0.27 mM for NAD, and for NADP-linked activity 0.8 mM for glucose-6-phosphate and 0.08 mM for NADP. NAD- and NADP-linked activities were inhibited by both NADH and NADPH. (2'-phospho-)adenosinediphospho-ribose inhibited only NAD-linked activity. The inhibition was competitive with respect to NAD and noncompetitive with respect to glucose-6-phosphate.  相似文献   

14.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

15.
In Escherichia coli, the pentose phosphate pathway is one of the main sources of NADPH. The first enzyme of the pathway, glucose-6-phosphate dehydrogenase (G6PDH), is generally considered an exclusive NADPH producer, but a rigorous assessment of cofactor preference has yet to be reported. In this work, the specificity constants for NADP and NAD for G6PDH were determined using a pure enzyme preparation. Absence of the phosphate group on the cofactor leads to a 410-fold reduction in the performance of the enzyme. Furthermore, the contribution of the phosphate group to binding of the transition state to the active site was calculated to be 3.6 kcal·mol(-1). In order to estimate the main kinetic parameters for NAD(P) and NAD(P)H, we used the classical initial-rates approach, together with an analysis of reaction time courses. To achieve this, we developed a new analytical solution to the integrated Michaelis-Menten equation by including the effect of competitive product inhibition using the ω-function. With reference to relevant kinetic parameters and intracellular metabolite concentrations reported by others, we modeled the sensitivity of reduced cofactor production by G6PDH as a function of the redox ratios of NAD/NADH (rR(NAD)) and NADP/NADPH (rR(NADP)). Our analysis shows that NADPH production sharply increases within the range of thermodynamically feasible values of rR(NADP), but NADH production remains low within the range feasible for rR(NAD). Nevertheless, we show that certain combinations of rR(NADP) and rR(NAD) sustain greater levels of NADH production over NADPH.  相似文献   

16.
Summary P-Chloromercuribenzoate alters various reactions of rat liver glucose (hexose phosphate) dehydrogenase differently. The reagent has little effect on the glucose: NAD or the glucose: NADP oxidoreductases, doubles the rates of oxidations of galactose-6-phosphate and glucose-6-phosphate by NADP and greatly stimulates the oxidations of glucose-6-phosphate and galactose-6-phosphate by NAD. The reagent appears to react with a sulfhydryl group of the enzyme since activation is reversed and prevented by mercaptoethanol. The direct reaction of the reagent with the enzyme is indicated by its lower thermal stability in the presence of the p-chloromercuribenzoate. The size of the enzyme appears to be the same when determined by sucrose gradient centrifugation in the presence or absence of p-chloromercuribenzoate. In microsomes, the oxidation of NADH or NADPH hampers measurements of glucose dehydrogenase. Since p-chloromercuribenzoate inhibits microsomal oxidation of reduced nicontinamide nucleotides, it is possible to assay for glucose dehydrogenase accurately in the presence of the mercurial in microsomes and microsomal extracts and thus measure the effectiveness of a detergent in extracting the enzyme from microsomes.Abbreviation pcMB p-chloromercuribenzoic acid  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

18.
Nicotinamide nucleotide coenzymes were estimated enzymatically in cucumber leaves (Cucumis sativus L. cv. Suisei No. 2) during ammonium toxicity. The contents of all the coenzymes (NAD(H) and NADP(H)) were found to be higher in the ammonium-treated plants than in the control plants, and the difference attained a maximum at 5 days after the initiation of ammonium treatment. Thereafter, the contents of NAD and NADH returned towards the control level, but NADP and NADPH levels were lowered in injured plants. The ratios of NAD/NAD + NADH and NADP/NADP ++ NADPH were little altered by the ammonium treatment. Changes of nicotinamide nucleotide coenzymes are discussed in relation to respiratory metabolism in cucumber leaves during ammonium toxicity.  相似文献   

19.
The lpdA (Rv3303c) gene from Mycobacterium tuberculosis encoding a new member of the flavoprotein disulfide reductases was expressed in Escherichia coli, and the recombinant LpdA protein was purified to homogeneity. LpdA is a homotetramer and co-purifies with one molecule of tightly but noncovalently bound FAD and NADP+ per monomer. Although annotated as a probable lipoamide dehydrogenase in M. tuberculosis, LpdA cannot catalyze reduction of lipoyl substrates, because it lacks one of two cysteine residues involved in dithiol-disulfide interchange with lipoyl substrates and a His-Glu pair involved in general acid catalysis. The crystal structure of LpdA was solved by multiple isomorphous replacement with anomalous scattering, which confirmed the absence of these catalytic residues from the active site. Although LpdA cannot catalyze reduction of disulfide-bonded substrates, it catalyzes the NAD(P)H-dependent reduction of alternative electron acceptors such as 2,6-dimethyl-1,4-benzoquinone and 5-hydroxy-1,4-naphthaquinone. Significant primary deuterium kinetic isotope effects were observed with [4S-2H]NADH establishing that the enzyme promotes transfer of the C4-proS hydride of NADH. The absence of an isotope effect with [4S-2H]NADPH, the low Km value of 0.5 microm for NADPH, and the potent inhibition of the NADH-dependent reduction of 2,6-dimethyl-1,4-benzoquinone by NADP+ (Ki approximately 6 nm) and 2'-phospho-ADP-ribose (Ki approximately 800 nm), demonstrate the high affinity of LpdA for 2'-phosphorylated nucleotides and that the physiological substrate/product pair is NADPH/NADP+ rather than NADH/NAD+. Modeling of NADP+ in the active site revealed that LpdA achieves the high specificity for NADP+ through interactions involving the 2'-phosphate of NADP+ and amino acid residues that are different from those in glutathione reductase.  相似文献   

20.
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号