首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
植物根毛生长发育及分子调控机理   总被引:2,自引:0,他引:2  
植物根毛是植物吸收营养的主要器官, 了解根毛的发生、发育及遗传规律, 能对植物的养分吸收研究提供有利依据。文章旨在介绍植物根毛形态发生特性、发育生长过程及分子调控机理的研究进展, 利用比较基因组学方法研究农作物根毛形态和功能, 及有目的性的对根生长发育进行调控提供参考。研究发现植物根毛发育有反馈侧向抑制(lateral inhibition with feedback)和位置决定模式(position-dependent pattern of cell differentiation)两种方式。拟南芥根表皮细胞是以位置方式决定毛或非毛细胞发育类型, 已成为研究植物细胞命运和分化的模型。目前, 已经鉴定出控制根毛发育的基因, 包括一些转录因子如MYB家族蛋白TRIPTYCHON(TRY)、CAPRICE(CPC)和basic Helix-Loop-Helix (bHLH)蛋白GLABRA3、ENHANCER OF GLABRA3(EGL3)及WD-repeat蛋白等基因。最后针对根毛研究前景提出展望。  相似文献   

3.
4.
5.
6.
In the Arabidopsis root, patterning of the epidermal cell types is position-dependent. The epidermal cell pattern arises early during root development, and can be visualized using reporter genes driven by the GLABRA (GL)2 promoter as markers. The GL2 gene is preferentially expressed in the differentiating hairless cells (atrichoblasts) during a period in which epidermal cell identity is believed to be established. We show that AtAGP30 is also expressed in atrichoblasts. This gene encodes an arabinogalactan-protein (AGP) that is known to play a role in root regeneration and increases abscisic acid (ABA)-response rates. Although the expression level of this gene is regulated by the plant growth factors ABA and ethylene, only ABA was found to affect the tissue-specific pattern of expression. ABA also disrupts the expression pattern of the GL2::GUS (beta-glucuronidase) reporter gene. Our results indicate that ABA regulates epidermal cell-type-specific gene expression in the meristematic zone of the Arabidopsis root, while ethylene is known to act at later stages of epidermal differentiation. Despite its effects on the early stages of root epidermal patterning, ABA does not affect root hair formation on mature wild-type epidermal cells, suggesting that other developmental cues, like positional information, can progressively over-ride the ABA-mediated disruption of early epidermal patterning.  相似文献   

7.
8.
9.
10.
The Arabidopsis root produces a position-dependent pattern of hair-bearing and hairless cell types during epidermis development. Five loci (TRANSPARENT TESTA GLABRA [TTG], GLABRA2 [GL2], ROOT HAIR DEFECTIVE6 [RHD6], CONSTITUTIVE TRIPLE RESPONSE1 [CTR1], and AUXIN RESISTANT2 [AXR2]) and the plant hormones ethylene and auxin have been reported to affect the production of root hair and hairless cells in the Arabidopsis root. In this study, genetic, molecular, and physiological tests were employed to define the roles of these loci and hormones. Epistasis tests and reporter gene studies indicated that the hairless cell-promoting genes TTG and GL2 are likely to act early to negatively regulate the ethylene and auxin pathways. Studies of the developmental timing of the hormone effects indicated that ethylene and auxin pathways promote root hair outgrowth after cell-type differentiation has been initiated. The genetic analysis of ethylene-and auxin-related mutations showed that root hair formation is influenced by a network of hormone pathways, including a partially redundant ethylene signaling pathway. A model is proposed in which the patterning of root epidermal cells in Arabidopsis is regulated by the cell position-dependent action of the TTG/GL2 pathway, and the ethylene and auxin hormone pathways act to promote root hair outgrowth at a relatively late stage of differentiation.  相似文献   

11.
12.
13.
14.
The idea of common pathways guiding different fates is an emerging concept in plant development, and epidermal cell-fate specification in Arabidopsis thaliana is an excellent example to illustrate it. In the root epidermis, both hair patterning and differentiation depend on a complex interaction between both negative (WER, TTG, GL3, EGL3, and GL2) and positive (CPC, TRY, and ETC1) regulators of hair cell fate. These regulators pattern and differentiate hairs through a bi-directional signalling mechanism. The same molecular components (WER, TTG, GL3, EGL3, and GL2) seem to be involved in the patterning of stomata in the embryonic stem. However, the possible role of CPC, TRY, and ETC1 on stomatal patterning and/or differentiation has not been studied, questioning whether they, and the underlying bi-directional mechanism, guide patterning formation and differentiation in the hypocotyl.  相似文献   

15.
A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling.  相似文献   

16.
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non‐hair cells and represents a model system for studying the control of cell‐fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell‐fate stabilization. Our work opens the door for future studies addressing SAB‐dependent functions of the cytoskeleton during root epidermal patterning.  相似文献   

17.
18.
19.
20.
Arabidopsis root hair formation is determined by the patterning genes CAPRICE ( CPC ), GLABRA3 ( GL3 ), WEREWOLF ( WER ) and GLABRA2 ( GL2 ), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy–principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase ( CESA1 – 10 ) and 4 of 33 xyloglucan endotransglucosylase ( XTH1 – 33 ) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号