首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have isolated UvrB-DNA complexes by capture of biotinylated damaged DNA substrates on streptavidin-coated magnetic beads. With this method the UvrB-DNA preincision complex remains stable even in the absence of ATP. For the binding of UvrC to the UvrB-DNA complex no cofactor is needed. The subsequent induction of 3' incision does require ATP binding by UvrB but not hydrolysis. This ATP binding induces a conformational change in the DNA, resulting in the appearance of the DNase I-hypersensitive site at the 5' side of the damage. In contrast, the 5' incision is not dependent on ATP binding because it occurs with the same efficiency with ADP. We show with competition experiments that both incision reactions are induced by the binding of the same UvrC molecule. A DNA substrate containing damage close to the 5' end of the damaged strand is specifically bound by UvrB in the absence of UvrA and ATP (Moolenaar, G. F., Monaco, V., van der Marel, G. A., van Boom, J. H., Visse, R., and Goosen, N. (2000) J. Biol. Chem. 275, 8038-8043). To initiate the formation of an active UvrBC-DNA incision complex, however, UvrB first needs to hydrolyze ATP, and subsequently a new ATP molecule must be bound. Implications of these findings for the mechanism of the UvrA-mediated formation of the UvrB-DNA preincision complex will be discussed.  相似文献   

2.
UvrB, the ultimate damage-binding protein in bacterial nucleotide excision repair is capable of binding a vast array of structurally unrelated lesions. A beta-hairpin structure in the protein plays an important role in damage-specific binding. In this paper we have monitored DNA conformational alterations in the UvrB-DNA complex, using the fluorescent adenine analogue 2-aminopurine. We show that binding of UvrB to a DNA fragment with cholesterol damage moves the base adjacent to the lesion at the 3' side into an extrahelical position. This extrahelical base is not accessible for acrylamide quenching, suggesting that it inserts into a pocket of the UvrB protein. Also the base opposite this flipped base is extruded from the DNA helix. The degree of solvent exposure of both residues varies with the type of cofactor (ADP/ATP) bound by UvrB. Fluorescence of the base adjacent to the damage is higher when UvrB is in the ADP-bound configuration, but concomitantly this UvrB-DNA complex is less stable. In the ATP-bound form the UvrB-DNA complex is very stable and in this configuration the base in the non-damaged strand is more exposed. Hairpin residue Tyr-95 is specifically involved in base flipping in the non-damaged strand. We present evidence that this conformational change in the non-damaged strand is important for 3' incision by UvrC.  相似文献   

3.
In Escherichia coli nucleotide excision repair, the UvrB-DNA preincision complex plays a key role, linking adduct recognition to incision. We previously showed that the efficiency of the incision is inversely related to the stability of the preincision complex. We postulated that an isomerization reaction converts [UvrB-DNA], stable but incompetent for incision, into the [UvrB-DNA]' complex, unstable and competent for incision. Here, we identify two parameters, negative supercoiling and presence of a nick at the fifth phosphodiester bond 3' to the lesion, that accelerate the isomerization leading to an increasing incision efficiency. We also show that the [UvrB-DNA] complex is more resistant to a salt concentration increase than the [UvrB-DNA]' complex. Finally, we report that the [UvrB-DNA]' is recognized by UvrC. These data suggest that the isomerization reaction leads to an exposure of single-stranded DNA around the lesion. This newly exposed single-stranded DNA serves as a binding site and substrate for the UvrC endonuclease. We propose that the isomerization reaction is responsible for coupling UvrB and UvrC activities and that this reaction corresponds to the binding of ATP.  相似文献   

4.
(A)BC excinuclease is the enzymatic activity resulting from the joint actions of UvrA, UvrB and UvrC proteins of Escherichia coli. The enzyme removes from DNA many types of adducts of dissimilar structures with different efficiencies. To understand the mechanism of substrate recognition and the basis of enzyme specificity, we investigated the interactions of the three subunits with two synthetic substrates, one containing a psoralen-thymine monoadduct and the other a thymine dimer. Using DNase I as a probe, we found that UvrA makes a 33 base-pair footprint around the psoralen-thymine adduct and that UvrA-UvrB make a 45 base-pair asymmetric footprint characterized by a hypersensitive site 11 nucleotides 5' to the adduct and protection mostly on the 3' side of the damage. Conditions that favor dissociation of UvrA from the UvrA-UvrB-DNA complex, such as addition of excess undamaged DNA to the reaction mixture, resulted in the formation of a 19 base-pair UvrB footprint. In contrast, a thymine dimer in a similar sequence context failed to elicit a UvrA, a UvrA-UvrB or UvrB footprint and gave rise to a relatively weak DNase I hypersensitive site typical of a UvrA-UvrB complex. Dissociation of UvrA from the UvrA-UvrB-DNA complex stimulated the rate of incision of both substrates upon addition of UvrC, leading us to conclude that UvrA is not a part of the incision complex and that it actually interferes with incision. The extent of incision of the two substrates upon addition of UvrC (70% for the psoralen adduct and 20% for the thymine dimer) was proportional to the extent of formation of the UvrA-UvrB-DNA (i.e. UvrB-DNA) complex, indicating that substrate discrimination occurs at the preincision step.  相似文献   

5.
UvrB is the ultimate damage-binding protein in bacterial nucleotide excision repair. Previous AFM experiments have indicated that UvrB binds to a damage as a dimer. In this paper we visualize for the first time a UvrB dimer in a gel retardation assay, with the second subunit (B2) more loosely bound than the subunit (B1) that interacts with the damage. A beta-hairpin motif in UvrB plays an important role in damage specific binding. Alanine substitutions of Y92 or Y93 in the beta-hairpin result in proteins that kill E. coli cells as a consequence of incision in non-damaged DNA. Apparently, both residues are needed to prevent binding of UvrB to non-damaged DNA. The lethality of Y93A results from UvrC-mediated incisions, whereas that of Y92A is due to incisions by Cho. This difference could be ascribed to a difference in stability of the B2 subunit in the mutant UvrB-DNA complexes. We show that for 3' incision UvrC needs to displace this second UvrB subunit from the complex, whereas Cho seems capable to incise the dimer-complex. Footprint analysis of the contacts of UvrB with damaged DNA revealed that the B2 subunit interacts with the flanking DNA at the 3' side of the lesion. The B2 subunit of mutant Y92A appeared to be more firmly associated with the DNA, indicating that even when B1 is bound to a lesion, the B2 subunit probes the adjacent DNA for presence of damage. We propose this to be a reflection of the process that the UvrB dimer uses to find lesions in the DNA. In addition to preventing binding to non-damaged DNA, the Y92 and Y93 residues appear also important for making specific contacts (of B1) with the damaged site. We show that the concerted action of the two tyrosines lead to a conformational change in the DNA surrounding the lesion, which is required for the 3' incision reaction.  相似文献   

6.
Ma H  Zou Y 《Biochemistry》2004,43(14):4206-4211
During the DNA damage recognition of nucleotide excision repair in Escherichia coli the interaction of UvrB protein with damaged DNA ensures the recognition of differences in the intrinsic chemical structures of a variety of adduct molecules in DNA double helix. Our earlier study indicated that a single tyrosine-to-tryptophan mutation at residue 95 converted the UvrB to a protein [UvrB(Y95W)] that is able to bind to a structure-specific bubble DNA substrate, even in the absence of UvrA. Fluorescence spectroscopy therefore was adopted to investigate the biochemical properties and thermodynamics of DNA damage recognition by the mutant protein. We examined the binding of the UvrB(Y95W) mutant protein to a structure-specific 30 bp DNA substrate containing a single fluorescein which serves as both an adduct and a fluorophore. Binding of the protein to the substrate results in a significant reduction in fluorescence. By monitoring the fluorescence changes, binding isotherms were generated from a series of titration experiments at various physiological temperatures, and dissociation constants were determined. Analysis of our data indicate that interaction of UvrB(Y95W) protein with the adduct incurred a large negative change in heat capacity DeltaC(p)(o)(obs) (-1.1 kcal mol(-1) K(-1)), while the DeltaG(o)(obs) was relatively unchanged with temperature. Further study of the binding at various concentrations of KCl showed that on average only about 1.5 ion pairs were involved in formation of the UvrB-DNA complex. Together, these results suggested that hydrophobic interactions are the main driving forces for the recognition of DNA damage by UvrB protein.  相似文献   

7.
UvrB, the ultimate damage-recognizing component of bacterial nucleotide excision repair, contains a flexible beta-hairpin rich in hydrophobic residues. We describe the properties of UvrB mutants in which these residues have been mutated. The results show that Y101 and F108 in the tip of the hairpin are important for the strand-separating activity of UvrB, supporting the model that the beta-hairpin inserts between the two DNA strands during the search for DNA damage. Residues Y95 and Y96 at the base of the hairpin have a direct role in damage recognition and are positioned close to the damage in the UvrB-DNA complex. Strikingly, substituting Y92 and Y93 results in a protein that is lethal to the cell. The mutant protein forms pre- incision complexes on non-damaged DNA, indicating that Y92 and Y93 function in damage recognition by preventing UvrB binding to non-damaged sites. We propose a model for damage recognition by UvrB in which, stabilized by the four tyrosines at the base of the hairpin, the damaged nucleotide is flipped out of the DNA helix.  相似文献   

8.
Nucleotide excision repair (NER) is a universal DNA repair mechanism found in all three kingdoms of life. Its ability to repair a broad range of DNA lesions sets NER apart from other repair mechanisms. NER systems recognize the damaged DNA strand and cleave it 3', then 5' to the lesion. After the oligonucleotide containing the lesion is removed, repair synthesis fills the resulting gap. UvrB is the central component of bacterial NER. It is directly involved in distinguishing damaged from undamaged DNA and guides the DNA from recognition to repair synthesis. Recently solved structures of UvrB from different organisms represent the first high-resolution view into bacterial NER. The structures provide detailed insight into the domain architecture of UvrB and, through comparison, suggest possible domain movements. The structure of UvrB consists of five domains. Domains 1a and 3 bind ATP at the inter-domain interface and share high structural similarity to helicases of superfamilies I and II. Not related to helicase structures, domains 2 and 4 are involved in interactions with either UvrA or UvrC, whereas domain 1b was implicated for DNA binding. The structures indicate that ATP binding and hydrolysis is associated with domain motions. UvrB's ATPase activity, however, is not coupled to the separation of long DNA duplexes as in helicases, but rather leads to the formation of the preincision complex with the damaged DNA substrate. The location of conserved residues and structural comparisons with helicase-DNA structures suggest how UvrB might bind to DNA. A model of the UvrB-DNA interaction in which a beta-hairpin of UvrB inserts between the DNA double strand has been proposed recently. This padlock model is developed further to suggest two distinct consequences of domain motion: in the UvrA(2)B-DNA complex, domain motions lead to translocation along the DNA, whereas in the tight UvrB-DNA pre-incision complex, they lead to distortion of the 3' incision site.  相似文献   

9.
To better define the molecular architecture of nucleotide excision repair intermediates it is necessary to identify the specific domains of UvrA, UvrB, and UvrC that are in close proximity to DNA damage during the repair process. One key step of nucleotide excision repair that is poorly understood is the transfer of damaged DNA from UvrA to UvrB, prior to incision by UvrC. To study this transfer, we have utilized two types of arylazido-modified photoaffinity reagents that probe residues in the Uvr proteins that are closest to either the damaged or non-damaged strands. The damaged strand probes consisted of dNTP analogs linked to a terminal arylazido moiety. These analogs were incorporated into double-stranded DNA using DNA polymerase beta and functioned as both the damage site and the cross-linking reagent. The non-damaged strand probe contained an arylazido moiety coupled to a phosphorothioate-modified backbone of an oligonucleotide opposite the damaged strand, which contained an internal fluorescein adduct. Six site-directed mutants of Bacillus caldotenax UvrB located in different domains within the protein (Y96A, E99A, R123A, R183E, F249A, and D510A), and two domain deletions (Delta2 and Deltabeta-hairpin), were assayed. Data gleaned from these mutants suggest that the handoff of damaged DNA from UvrA to UvrB proceeds in a three-step process: 1) UvrA and UvrB bind to the damaged site, with UvrA in direct contact; 2) a transfer reaction with UvrB contacting mostly the non-damaged DNA strand; 3) lesion engagement by the damage recognition pocket of UvrB with concomitant release of UvrA.  相似文献   

10.
UvrB is the main damage recognition protein in bacterial nucleotide excision repair and is capable of recognizing various structurally unrelated types of damage. Previously we have shown that upon binding of Escherichia coli UvrB to damaged DNA two nucleotides become extrahelical: the nucleotide directly 3' to the lesion and its base-pairing partner in the non-damaged strand. Here we demonstrate using a novel fluorescent 2-aminopurine-menthol modification that the position of the damaged nucleotide itself does not change upon UvrB binding. A co-crystal structure of B. caldotenax UvrB and DNA has revealed that one nucleotide is flipped out of the DNA helix into a pocket of the UvrB protein where it stacks on Phe249 [J.J. Truglio, E. Karakas, B. Hau, H. Wang, M.J. DellaVecchia, B. van Houten, C. Kisker, Structural basis for DNA recognition and processing by UvrB, Nat. Struct. Mol. Biol. 13 (2006) 360-364]. By mutating the equivalent of Phe249 (Tyr249) in the E. coli UvrB protein we show that on damaged DNA neither of the extrahelical nucleotides is inserted into this protein pocket. The mutant UvrB protein, however, resulted in an increased binding and incision of undamaged DNA showing that insertion of a base into the nucleotide-binding pocket is important for dissociation of UvrB from undamaged sites. Replacing the nucleotides in the non-damaged strand with a C3-linker revealed that the extruded base in the non-damaged strand is not directly involved in UvrB-binding or UvrC-mediated incision, but that its displacement is needed to allow access for residues of UvrB or UvrC to the neighboring base, which is directly opposite the DNA damage. This interaction is shown to be essential for optimal 3'-incision by UvrC. After 3'-incision base flipping in the non-damaged DNA strand is lost, indicative for a conformational change needed to prepare the UvrB-DNA complex for 5'-incision.  相似文献   

11.
UvrA, UvrB, and UvrC initiate nucleotide excision repair by incising a damaged DNA strand on each side of the damaged nucleotide. This incision reaction is substoichiometric with regard to UvrB and UvrC, suggesting that both proteins remain bound following incision and do not "turn over." The addition of only helicase II to such reaction mixtures turns over UvrC; UvrB turnover requires the addition of helicase II, DNA polymerase I, and deoxynucleoside triphosphates. Column chromatography and psoralen photocross-linking experiments show that following incision, the damaged oligomer remains associated with the undamaged strand, UvrB, and UvrC in a post-incision complex. Helicase II releases the damaged oligomer and UvrC from this complex, making repair synthesis possible; DNase I footprinting experiments show that UvrB remains bound to the resulting gapped DNA until displaced by DNA polymerase I. The specific binding of UvrB to a psoralen adduct in DNA inhibits psoralen-mediated DNA-DNA cross-linking, yet promotes the formation of UrvB-psoralen-DNA cross-links. The discovery of psoralen-UvrB photocross-linking offers the potential of active-site labeling.  相似文献   

12.
Nucleotide excision repair in Escherichia coli is a multistep process in which DNA damage is removed by incision of the DNA on both sides of the damage, followed by removal of the oligonucleotide containing the lesion. The two incision reactions take place in a complex of damaged DNA with UvrB and UvrC. It has been shown (Lin, J. -J., and Sancar, A. (1992) J. Biol. Chem. 267, 17688-17692) that the catalytic site for incision on the 5' side of the damage is located in the UvrC protein. Here we show that the catalytic site for incision on the 3' side is in this protein as well, because substitution R42A abolishes 3' incision, whereas formation of the UvrBC-DNA complex and the 5' incision reaction are unaffected. Arg(42) is part of a region that is homologous to the catalytic domain of the homing endonuclease I-TevI. We propose that the UvrC protein consists of two functional parts, with the N-terminal half for the 3' incision reaction and the C-terminal half containing all the determinants for the 5' incision reaction.  相似文献   

13.
It is generally accepted that the damage recognition complex of nucleotide excision repair in Escherichia coli consists of two UvrA and one UvrB molecule, and that in the preincision complex UvrB binds to the damage as a monomer. Using scanning force microscopy, we show here that the damage recognition complex consists of two UvrA and two UvrB subunits, with the DNA wrapped around one of the UvrB monomers. Upon binding the damage and release of the UvrA subunits, UvrB remains a dimer in the preincision complex. After association with the UvrC protein, one of the UvrB monomers is released. We propose a model in which the presence of two UvrB subunits ensures damage recognition in both DNA strands. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one of the UvrB monomers, which will subsequently probe one of the DNA strands for the presence of a lesion. When no damage is found, the DNA will wrap around the second UvrB subunit, which will check the other strand for aberrations.  相似文献   

14.
One of the least understood steps in the UvrABC mediated excision repair process is the recognition of lesions in the DNA. The isolation of different reaction intermediates is of vital importance for the unraveling of the mechanism. A mobility shift gel electrophoresis assay is described which visualizes such intermediates. After incubation of a DNA substrate containing a specific cisplatin adduct with UvrA alone or with UvrA and UvrB, UvrA.DNA, UvrAB.DNA and UvrB.DNA complexes were observed which could be identified using specific antibodies. At low UvrA concentrations in the presence of UvrB only the UvrB.DNA complex is observed. Bands corresponding to the UvrAB.DNA complex and also other nonspecific bands are found at relatively high UvrA concentrations. The DNase-I footprint for the UvrAB.- and UvrB.DNA complex are very similar and protect about 20 bases. Both complexes are incised in the presence of UvrC with comparable efficiency. The UvrAB.- and the UvrB.DNA complex were both incised at the 8th phosphodiester bond 5' to a specific cisplatin adduct. In addition the UvrAB.DNA complex could also be incised at the 15th phosphodiesterbond 5' to the damaged site. The results suggest that the UvrB.DNA complex is the natural substrate for UvrC-induced incision.  相似文献   

15.
Structure and function of the (A)BC excinuclease of Escherichia coli   总被引:9,自引:0,他引:9  
C P Selby  A Sancar 《Mutation research》1990,236(2-3):203-211
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks.  相似文献   

16.
Nucleotide excision repair (NER) is a major DNA repair mechanism that recognizes a broad range of DNA damages. In Escherichia coli, damage recognition in NER is accomplished by the UvrA and UvrB proteins. We have analysed the structural properties of the different protein-DNA complexes formed by UvrA, UvrB and (damaged) DNA using atomic force microscopy. Analysis of the UvrA(2)B complex in search of damage revealed the DNA to be wrapped around the UvrB protein, comprising a region of about seven helical turns. In the UvrB-DNA pre-incision complex the DNA is wrapped in a similar way and this DNA configuration is dependent on ATP binding. Based on these results, a role for DNA wrapping in damage recognition is proposed. Evidence is presented that DNA wrapping in the pre-incision complex also stimulates the rate of incision by UvrC.  相似文献   

17.
The Escherichia coli UvrABC endonuclease is capable of initiating the repair of a wide variety of DNA damages. To study the binding of the UvrAB complex to the DNA at the site of a lesion we have constructed a synthetic DNA fragment with a defined cis-diamminedichloroplatinum(II) (cis-Pt).GG adduct. The cis-Pt.GG is the major adduct after treatment of DNA with the antitumor agent cisplatin. Binding to the DNA at the site of the defined lesion was studied with DNase I and MPE.Fe(II) hydroxyl radical footprinting. The results indicate that the UvrAB complex binds to the convex side of the kink in the DNA caused by the cis-Pt.GG adduct. Concerted incisions of the damaged strand by the UvrABC endonuclease were at the 8th phosphodiester bond 5' to and at the 4th bond 3' of the adjacent guanines. An additional incision was found at the 15th phosphodiester bond 5' to the damaged site. This extra incision was stimulated by a high concentration of UvrC.  相似文献   

18.
Nazimiec M  Lee CS  Tang YL  Ye X  Case R  Tang M 《Biochemistry》2001,40(37):11073-11081
The uvrA, uvrB, and uvrC genes of Escherichia coli control the initial steps of nucleotide excision repair. The uvrC gene product is involved in at least one of the dual incisions produced by the UvrABC complex. Using single-stranded (ss) DNA affinity chromatography, we have separated two forms of UvrC from both wild-type E. coli cells and overproducing cells. UvrCI elutes at 0.4 M KCl, and UvrCII elutes at 0.6 M KCl. In general, both forms, in the presence of UvrA and UvrB, actively incise UV-irradiated and CC-1065-modified DNA in the same fashion; i.e., they incise six to eight nucleotides 5' to and three to five nucleotides 3' to a photoproduct or a CC-1065-N3-adenine adduct. They produce different incisions, however, at a CC-1065-N3-adenine adduct in the sequence 5'-GATTACG- present in the MspI-BstNI 117 bp fragment of M13mp1. UvrABCI incises at both the 5' and 3' sides of the adduct (UvrABCI cut), while UvrABCII incises only at the 5' side (UvrABCII cut). Mixing UvrCI and UvrCII results in both UvrABCI and UvrABCII cuts, and the levels of these two types of cutting are proportional to the amount of UvrCI and UvrCII. DNase I footprints of the MspI-BstNI 117 bp DNA fragment containing a site-directed CC-1065-adenine adduct at the 5'-GATTACG- site show that UvrCII, but not UvrCI, binds to the adduct site. Furthermore, the pattern of DNase I footprints induced by UvrCII binding differs from the pattern of the footprints induced by UvrA, UvrAB, and UvrABCI binding. Interestingly, while the presence of unirradiated DNA enhances the efficiency of UvrABCII in incising UV-irradiated DNA, it does not enhance UvrABCII incision of the CC-1065-N3-adenine adduct formed at 5'-GATTACG-. These results show that two different forms of UvrC differ in DNA binding properties as well as incision modes at some kinds of DNA damage.  相似文献   

19.
DNA-damage recognition in the nucleotide excision repair (NER) cascade is a complex process, operating on a wide variety of damages. UvrB is the central component in prokaryotic NER, directly involved in DNA-damage recognition and guiding the DNA through repair synthesis. We report the first structure of a UvrB-double-stranded DNA complex, providing insights into the mechanism by which UvrB binds DNA, leading to formation of the preincision complex. One DNA strand, containing a 3' overhang, threads behind a beta-hairpin motif of UvrB, indicating that this motif inserts between the strands of the double helix, thereby locking down either the damaged or undamaged strand. The nucleotide directly behind the beta-hairpin is flipped out and inserted into a small, highly conserved pocket in UvrB.  相似文献   

20.
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号