首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity and specificity of polyclonal and monoclonal antibodies raised against anthrax spore preparations has been assessed by Western blotting. None of the antibodies studied were completely specific in recognizing the anthrax spore surface. A polyclonal serum recognized a wide range of spore surface epitopes and demonstrated limited cross-reaction with the near-neighbour species Bacillus cereus spore surface. Two monoclonal antibodies studied demonstrated more extensive cross-reaction with distant-neighbour species B. globigii and B. subtilis. These monoclonal antibodies did not react with spore surface epitopes but did bind strongly to vegetative cell epitopes in all four Bacillus species studied.  相似文献   

2.
As part of an effort to develop detectors for selected species of bacterial spores, we screened phage display peptide libraries for 7- and 12-mer peptides that bind tightly to spores of Bacillus subtilis. All of the peptides isolated contained the sequence Asn-His-Phe-Leu at the amino terminus and exhibited clear preferences for other amino acids, especially Pro, at positions 5 to 7. We demonstrated that the sequence Asn-His-Phe-Leu-Pro (but not Asn-His-Phe-Leu) was sufficient for tight spore binding. We observed equal 7-mer peptide binding to spores of B. subtilis and its most closely related species, Bacillus amyloliquefaciens, and slightly weaker binding to spores of the closely related species Bacillus globigii. These three species comprise one branch on the Bacillus phylogenetic tree. We did not detect peptide binding to spores of several Bacillus species located on adjacent and nearby branches of the phylogenetic tree nor to vegetative cells of B. subtilis. The sequence Asn-His-Phe-Leu-Pro was used to identify B. subtilis proteins that may employ this peptide for docking to the outer surface of the forespore during spore coat assembly and/or maturation. One such protein, SpsC, appears to be involved in the synthesis of polysaccharide on the spore coat. SpsC contains the Asn-His-Phe-Leu-Pro sequence at positions 6 to 10, and the first five residues of SpsC apparently must be removed to allow spore binding. Finally, we discuss the use of peptide ligands for bacterial detection and the use of short peptide sequences for targeting proteins during spore formation.  相似文献   

3.
To confirm the presence of the outer spore membrane in dormant spore coats of Bacillus subtilis, the proteins from vegetative cell membrane and dormant spore coat fractions were compared by immunoblot assay with antibodies prepared against both preparations. The spore coat fraction contained at least 11 proteins antigenically identical to those in the vegetative cell membranes. Further, the cytochemical localization of the proteins derived from vegetative cell membrane in dormant spores was examined by an immunoelectron microscopy method with a colloidal gold-immunoglobulin G complex. The colloidal gold particles were observed in the coat region and around the core region of dormant spore. These results have provided evidence that some proteins from vegetative cell membrane remain in the dormant spore coat region of B. subtilis, although it is not clear whether the outer membrane persists as an intact functional entity or not.  相似文献   

4.
Five monoclonal antibodies against bacterial spores of Bacillus cereus T and Clostridium sporogenes PA3679 were developed. Two antibodies (B48 and B183) were selected for their reactivity with B. cereus T spores, two (C33 and C225) were selected for their reactivity with C. sporogenes spores, and one (D89) was selected for its reactivity with both B. cereus and C sporogenes spores. The isotypes of the antibodies were determined to be immunoglobulin G2a (IgG2a) (B48), IgG1 (B183), and IgM (C33, C225, and D89). The antibodies reacted with spores of B. cereus T, Bacillus subtilis subsp. globigii, Bacillus megaterium, Bacillus stearothermophilus, C. sporogenes, Clostridium perfringens, and Desulfotomaculum nigrificans. Antibody D89 also reacted with vegetative cells of B. cereus and C. sporogenes. Analysis of B. cereus spore extracts showed that two of the antigens with which the anti-Bacillus antibodies reacted had molecular masses of 76 kDa and approximately 250 kDa. Immunocytochemical localization indicated that antigens with which B48, B183, and D89 react are on the exosporium of the B. cereus T spore. Antibody D89 reacted with the exosporium and outer cortex of C. sporogenes spores in immunocytochemical localization studies but did not react with extracts of C. sporogenes or B. cereus spores in Western blotting. Some C. sporogenes antigens were not stable during long-term storage at -20 degrees C. Antibodies B48, B183, and D89 should prove to be useful tools for developing immunological methods for the detection of bacterial spores.  相似文献   

5.
The relative contribution of DNA restriction and of sequence heterology as barriers to interspecies transfer of DNA was studied in the heterologous transformation of Bacillus subtilis recipients by DNA was studied in the heterologous transformation of Bacillus subtilis recipients by DNA isolated from B. globigii. Transformants were obtained at very low frequencies in the evolutionarily nonconserved aromatic region; high cotransfer of linked markers was observed. New mutations were introduced into the B. globigii intergenote sequence in the resulting hybrids; these markers could be transformed with high efficiency by both B. globigii and B. subtilis DNA, representing a 10(5)-fold increase in heterologous transforming efficiency. A restriction activity in B. globigii crude extracts inactivated the biological activity of B. subtilis and hybrid DNA but not B. globigii DNA in vitro, demonstrating different sites for restriction and modification between these species. In vivo, however, B. globigii and hybrid DNA transformed the B. globigii sequence in a hybrid recipient with the same efficiency. These results show that sequence heterology is the major barrier to interspecies transformation and that, in this system, enzymatic restriction does not prevent interspecies transformation.  相似文献   

6.
AIMS: To determine the size distribution of the spores of Bacillus anthracis, and compare its size with other Bacillus species grown and sporulated under similar conditions. METHODS AND RESULTS: Spores from several Bacillus species, including seven strains of B. anthracis and six close neighbours, were prepared and studied using identical media, protocols and instruments. Here, we report the spore length and diameter distributions, as determined by transmission electron microscopy (TEM). We calculated the aspect ratio and volume of each spore. All the studied strains of B. anthracis had similar diameter (mean range between 0.81 +/- 0.08 microm and 0.86 +/- 0.08 microm). The mean lengths of the spores from different B. anthracis strains fell into two significantly different groups: one with mean spore lengths 1.26 +/- 0.13 microm or shorter, and another group of strains with mean spore lengths between 1.49 and 1.67 microm. The strains of B. anthracis that were significantly shorter also sporulated with higher yield at relatively lower temperature. The grouping of B. anthracis strains by size and sporulation temperature did not correlate with their respective virulence. CONCLUSIONS: The spores of Bacillus subtilis and Bacillus atrophaeus (previously named Bacillus globigii), two commonly used simulants of B. anthracis, were considerably smaller in length, diameter and volume than all the B. anthracis spores studied. Although rarely used as simulants, the spores of Bacillus cereus and Bacillus thuringiensis had dimensions similar to those of B. anthracis. SIGNIFICANCE AND IMPACT OF THE STUDY: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefence against B. anthracis. The data presented here should help in the selection of simulants that better resemble the properties of B. anthracis, and thus, more accurately represent the performance of collectors, detectors and other countermeasures against this threat agent.  相似文献   

7.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B, anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

8.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B. anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

9.
Immunoblot analysis of Bacillus subtilis cell extracts with polyclonal antibodies, raised against purified exocellular alpha-amylase, revealed one protein species of 82,000 Da. This protein was found even in cells in which the amyE gene, encoding exocellular alpha-amylase, was disrupted. Isolated from the membrane fraction, the 82,000-M(r) protein displayed an alpha-amylase activity in vitro.  相似文献   

10.
Short peptides are capable of tight and specific binding to physiological or fortuitous receptors on the surface of cells. These peptides can be used to tag or capture target cells in an assortment of detector platforms. As part of an effort to identify small-molecule ligands for advanced detectors for spores of Bacillus anthracis, the causative agent of anthrax, we are screening (or biopanning) commercial phage display peptide libraries for peptides that bind tightly and selectively to spores of several Bacillus species. In addition to B. anthracis, these species include B. cereus, B. subtilis, and B. globigii. This review summarizes the methods used in our studies, the results from the biopanning experiments, and the characterization of the spore-binding peptides identified to date. Briefly, several unique families of peptides, with consensus sequences< or = seven-amino-acids long, were identified that exhibit preferential binding to spores (but not vegetative cells) of either one or only a few Bacillus species. At least one peptide family binds well to spores of multiple strains of B. anthracis, while binding poorly or not at all to spores of phylogenetically similar species. This review also discusses other points of interest regarding the use of peptide ligands for spore detection and for the detection of other types of cells.  相似文献   

11.
Abstract To clarify the molecular mechanisms that trigger spore germination of Bacillus subtilis , the location of GerA proteins (GerAA, GerAB and GerAC), which were reported to be putative gene products of a receptor for one of the germinants, l-alanine, was investigated by immunological techniques using anti-GerA peptide antibodies. Four antibodies were raised against the corresponding epitopes, two in GerAA, one in GerAB and the other in GerAC molecules. The binding of all four antibodies to the inner surface of the cortex-less spore coat fragments could be seen by scanning immunoelectron microscopy with colloidal gold particles. The result agreed with the fact, previously reported, that the colloidal gold particles were visualized just inside the spore coat layer by transmission immunoelectron microscopy using another anti-GerAB peptide antibody.  相似文献   

12.
Dried preparations with Streptococcus faecium, strain A(2)1, and spores of Bacillus sphaericus, strain C(I)A, normally used for control of the microbiological efficiency of radiation sterilization plants and preparations with spores of Bacillus subtilis, normally used for control of sterilization by dry heat, formalin, and ethylene oxide, as well as similar preparations with Micrococcus radiodurans, strain R(1), and spores of Bacillus globigii (B. subtilis, var. niger) were gamma irradiated with dose rates from 16 to 70 krad/h at temperatures from 60 to 100 C. At 80 C the radiation response of the spore preparations was the same as at room temperature, whereas the radiation resistance of the preparations with the two vegetative strains was reduced. At 100 C the radiation response of preparations with spores of B. subtilis was unaffected by the high temperature, whereas at 16 and and 25 krad/h the radiation resistance of the radiation-resistant sporeformer B. sphaericus, strain C(I)A, was reduced to the level of radiation resistance of preparations with spores of B. subtilis. It is concluded that combinations of heat and gamma irradiation at the temperatures and dose rates tested may have very few practical applications in sterilization of medical equipment.  相似文献   

13.
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called BclA, which comprises a central collagen-like region (CLR) and a globular C-terminal domain. Here, the entire CLR coding sequence of BclA was removed, and the resulting protein (tBclA) produced in Escherichia coli. The crystallographic structure of tBclA was determined to 1.35 A resolution, and consists of an all-beta structure with a TNF-like jelly fold topology (12 beta-strands which form 2 beta-sheets of five strands each) consistent with previous studies on wild-type BclA. These globular domains are tightly packed into trimeric structures (surface shape complementarity; S (c) = 0.83), demonstrating that formation of the core structure of BclA is independent of the anchoring collagen-like region. A polyclonal antibody raised against tBclA recognized B. anthracis spores directly, and showed little cross-reactivity (<10%) with the spores of the closely related species Bacillus cereus and Bacillus thuringiensis, when compared to two other polyclonal antibodies raised against B. anthracis spore extracts and inactivated spores. The tBclA protein was used to purify a pool of specific antibodies from bovine colostrum whey samples from cows inoculated with the Sterne strain anthrax vaccine, which also showed reactivity with B. anthracis spores. Together, these results demonstrate that tBclA provides a safer and more effective way to the production and purification of antibodies with high binding affinity for B. anthracis spores. Biotechnol. Bioeng. 2008;99: 774-782. (c) 2007 Wiley Periodicals, Inc.  相似文献   

14.
As found previously with other Bacillus species, spores of B. stearothermophilus and "Thermoactinomyces thalpophilus" contained significant levels of small, acid-soluble spore proteins (SASP) which were rapidly degraded during spore germination and which reacted with antibodies raised against B. megaterium SASP. Genes coding for a B. stearothermophilus and a "T. thalpophilus" SASP as well as for two B. cereus SASP were cloned, their nucleotide sequences were determined, and the amino acid sequences of the SASP coded for were compared. Strikingly, all of the amino acid residues previously found to be conserved in this group of SASP both within and between two other Bacillus species (B. megaterium and B. subtilis) were also conserved in the SASP coded for by the B. cereus genes as well as those coded for by the genes from the more distantly related organisms B. stearothermophilus and "T. thalpophilus." This finding strongly suggests that there is significant selective pressure to conserve SASP primary sequence and thus that these proteins serve some function other than simply amino acid storage.  相似文献   

15.
Spores of Bacillus subtilis SA22, harvested from nutrient agar after 9 d at 30°C and stored in distilled water at 4°C, were unaltered in their resistance to 17.7% hydrogen peroxide or 0.04% peracetic acid after storage for up to 134 weeks. Three spore crops of B. subtilis globigii were unaffected by storage for up to 134 weeks with respect to 17.7% hydrogen peroxide resistance but were significantly more resistant to 0.04% peracetic acid following storage.  相似文献   

16.
17.
Monoclonal antibodies against spore antigens of Bacillus anthracis   总被引:3,自引:0,他引:3  
Abstract A murine monoclonal antibody produced against heat inactivated spores of Bacillus anthracis Ames, reacted with live or inactivated spores of several anthrax strains in indirect immunofluorescence (IF) tests. The reactive anthrax strain gave only a moderate degree of reaction. No staining of anthrax vegetative cells was observed. The monoclonal did not react with spores of non-anthrax Bacillus strains that gave cross reactions with mouse hyperimmune antiserum raised against Ames spores. The staining of individual spores in B. anthracis preparations was more heterogeneous with the monoclonal antibody than with the hyperimmune serum. Evidence is produced that the epitope for this monoclonal is not stable during long-term storage of inactivated spore preparations, and is not fully available for reaction with antibody until late in spore maturation. The monoclonal did not react by immunoblotting (Western blotting) of spore extracts.  相似文献   

18.
Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores.  相似文献   

19.
Spore germination   总被引:2,自引:0,他引:2  
The germination of dormant spores of Bacillus species is the first crucial step in the return of spores to vegetative growth, and is induced by nutrients and a variety of non-nutrient agents. Nutrient germinants bind to receptors in the spore's inner membrane and this interaction triggers the release of the spore core's huge depot of dipicolinic acid and cations, and replacement of these components by water. These latter events trigger the hydrolysis of the spore's peptidoglycan cortex by either of two redundant enzymes in B. subtilis, and completion of cortex hydrolysis and subsequent germ cell wall expansion allows full spore core hydration and resumption of spore metabolism and macromolecular synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号