首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pakrasi PL  Jain AK 《Life sciences》2007,80(16):1503-1507
Cyclooxygenase (COX) plays an important role in prostaglandin (PG) synthesis and has two isoforms, COX1 and COX2. PGI synthase (PGIS) catalyzes the isomeization of PGH(2) to prostacyclin (PGI(2)). It is reported that COX2 derived PGI2(2) plays a critical role in blastocyst implantation and decidualization and PGI2 mediates its function via PPARdelta receptor. It is also known that cyclooxygenase derived prostaglandins play an important role in mouse blastocyst hatching in vitro. In this study we hypothesized that COX2 derived PGI2 plays an important role in preimplantation embryonic development by increasing the cell number. To examine this hypothesis, 8-cell stage mouse embryos were cultured in the presence of selective inhibitors of COX1 (SC560), COX2 (NS398) and PGIS (U51605) respectively. COX2 and PGIS inhibitor significantly reduced the blastocyst development and presence of PGI2 analogue along with these inhibitors restored the blastocyst development by increasing the total number of embryonic cells. Our immunohistochemical analysis showed that COX1 is expressed at 2-cell, 8-cell, compaction and blastocyst stage whereas COX2 expression starts from eight cell stage embryos. PGIS and PPARdelta expression starts at 2-cell stage of development. Our results suggest that PGI(2) may affect blastomeres number via the so called hypothesis of PPARdelta nuclear receptor in autocrine manner.  相似文献   

2.
The role of prostanoids in modulating respiratory syncytial virus (RSV) infection is unknown. We found that RSV infection in mice increases production of prostaglandin I(2) (PGI(2)). Mice that overexpress PGI(2) synthase selectively in bronchial epithelium are protected against RSV-induced weight loss and have decreased peak viral replication and gamma interferon levels in the lung compared to nontransgenic littermates. In contrast, mice deficient in the PGI(2) receptor IP have exacerbated RSV-induced weight loss with delayed viral clearance and increased levels of gamma interferon in the lung compared to wild-type mice. These results suggest that signaling through IP has antiviral effects while protecting against RSV-induced illness and that PGI(2) is a potential therapeutic target in the treatment of RSV.  相似文献   

3.
Extracellular nucleotides, such as ATP, are released from cells and play roles in various physiological and pathological processes through activation of P2 receptors. Here, we show that autocrine signaling through release of ATP and activation of P2X7 receptor influences migration of human lung cancer cells. Release of ATP was induced by stimulation with TGF-β1, which is a potent inducer of cell migration, in human lung cancer H292 cells, but not in noncancerous BEAS-2B cells. Treatment of H292 cells with a specific antagonist of P2X7 receptor resulted in suppression of TGF-β1-induced migration. PC-9 human lung cancer cells released a large amount of ATP under standard cell culture conditions, and P2X7 receptor-dependent dye uptake was observed even in the absence of exogenous ligand, suggesting constitutive activation of P2X7 receptor in this cell line. PC-9 cells showed high motile activity, which was inhibited by treatment with ecto-nucleotidase and P2X7 receptor antagonists, whereas a P2X7 receptor agonist enhanced migration. PC-9 cells also harbor a constitutively active mutation in epidermal growth factor receptor (EGFR). Treatment with EGFR tyrosine kinase inhibitor AG1478 suppressed both cell migration and P2X7 receptor expression in PC-9 cells. Compared to control PC-9 cells, cells treated with P2X7 antagonist exhibited broadened lamellipodia around the cell periphery, while AG1478-treated cells lacked lamellipodia. These results indicate that P2X7-mediated signaling and EGFR signaling may regulate migration of PC-9 cells through distinct mechanisms. We propose that autocrine ATP-P2X7 signaling is involved in migration of human lung cancer cells through regulation of actin cytoskeleton rearrangement.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9411-x) contains supplementary material, which is available to authorized users.  相似文献   

4.
Peroxisome proliferator-activated receptor-delta (PPARdelta) is a nuclear receptor implicated in lipid oxidation and the pathogenesis of obesity and diabetes. This study was designed to examine the potential effect of PPARdelta on human cholangiocarcinoma cell growth and its mechanism of actions. Overexpression of PPARdelta or activation of PPARdelta by its pharmacological ligand, GW501516, at low doses (0.5-50 nM) promoted the growth of three human cholangiocarcinoma cell lines (CCLP1, HuCCT1, and SG231). This effect was mediated by induction of cyclooxygenase-2 (COX-2) gene expression and production of prostaglandin E2 (PGE2) that in turn transactivated epidermal growth factor receptor (EGFR) and Akt. In support of this, inhibition of COX-2, EGFR, and Akt prevented the PPARdelta-induced cell growth. Furthermore, PPARdelta activation or PGE2 treatment induced the phosphorylation of cytosolic phospholipase A2alpha (cPLA2alpha), a key enzyme that releases arachidonic acid (AA) substrate for PG production via COX. Overexpression or activation of cPLA2alpha enhanced PPARdelta binding to PPARdelta response element (DRE) and increased PPARdelta reporter activity, indicating a novel role of cPLA2alpha for PPARdelta activation. Consistent with this, AA enhanced the binding of PPARdelta to DRE, in vitro, suggesting a direct role of AA for PPARdelta activation. In contrast, although PGE2 treatment increased the DRE reporter activity in intact cells, it failed to induce PPARdelta binding to DRE in cell-free system, suggesting that cPLA2alpha-mediated AA release is required for PGE2-induced PPARdelta activation. Taken together, these observations reveal that PPARdelta induces COX-2 expression in human cholangiocarcinoma cells and that the COX-2-derived PGE2 further activates PPARdelta through phosphorylation of cPLA2alpha. This positive feedback loop plays an important role for cholangiocarcinoma cell growth and may be targeted for chemoprevention and treatment.  相似文献   

5.
6.
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.  相似文献   

7.

Background  

The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells.  相似文献   

8.
Prostacyclin (PGI(2)) and thromboxane (TxA(2)) are biological opposites; PGI(2), a vasodilator and inhibitor of platelet aggregation, limits the deleterious actions of TxA(2), a vasoconstrictor and platelet activator. The molecular mechanisms involved in the counterregulation of PGI(2)/TxA(2) signaling are unclear. We examined the interaction of the receptors for PGI(2) (IP) and TxA(2) (TPalpha). IP-induced cAMP and TP-induced inositol phosphate generation were unaltered when the receptors were co-expressed in HEK 293 cells (IP/TPalpha-HEK). TP-cAMP generation, in response to TP agonists or a TP-dependent isoprostane, iPE(2)III, was evident in IP/TPalpha-HEK and in aortic smooth muscle cells, but not in cells expressing either receptor alone, or in IP-deficient aortic smooth muscle cells. Augmentation of TP-induced cAMP generation, with the IP agonist cicaprost, was ablated in IP-deficient cells and was independent of direct IP signaling. IP/TPalpha heterodimers were formed constitutively when the receptors were co-expressed, with no overt changes in ligand binding to the individual receptor sites. However, despite inefficient binding of iPE(2)III to either the IP or TPalpha, expressed alone or in combination, robust cAMP generation was evident in IP/TPalpha-HEK, suggesting the formation of an alternative receptor site. Thus, IP/TPalpha dimerization was coincident with TP-cAMP generation, promoting a "PGI(2)-like" cellular response to TP activation. This represents a previously unknown mechanism by which IP may limit the cellular effects of TP.  相似文献   

9.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.  相似文献   

10.
Endothelial cell injury is often associated with increased synthesis of prostaglandin (PG)I2. We observed, however, that endothelial cells treated with metabolic inhibitors which reduce cellular ATP content develop an injury pattern characterized by reduced PGI2 synthesis. This study examined the relationship between cell injury, arachidonic acid metabolism and ATP content in human umbilical vein endothelial cells treated with 2-deoxyglucose (2DG), a glycolytic inhibitor, and oligomycin (OG), a respiratory chain inhibitor. Either inhibitor alone significantly reduced cellular ATP concentrations, but only OG reduced basal PG synthesis. The combination of 2DG and OG, however, was more effective than either agent alone in reducing cellular ATP content (greater than or equal to 50% of control) and inhibiting basal and agonist-stimulated PGI2 synthesis. This reduced PGI2 synthesis preceded 51chromium release, lactic dehydrogenase release and was not associated with a net release of arachidonic acid from cell membranes. Histamine, A23187 and bradykinin stimulated PGI2 synthesis in untreated but not in 2DG and OG treated cells. Exogenous arachidonic acid increased PGI2 synthesis to a similar extent in both 2DG and OG treated and untreated cells. Therefore, reduced PG synthesis in 2DG and OG treated endothelial cells is not due to inhibition of cyclooxygenase. Furthermore, reduced PG synthesis in these cells occurs prior to cell injury and is not strictly associated with cellular ATP depletion.  相似文献   

11.
We found a novel subtype of prostaglandin (PG) I(2) receptor (IP(2)) expressed in the central nervous system. Recently we have demonstrated that (15R)-16-m-tolyl-17,18,19, 20-tetranorisocarbacyclin (15R-TIC) and 15-deoxy-16-m-tolyl-17,18,19, 20-tetranorisocarbacyclin (15-deoxy-TIC), IP(2)-specific ligands, significantly prevented high (50%) oxygen-induced apoptotic neuronal death in cultured hippocampal neurons. We report here a potent neuroprotective effect of such analogs on delayed neuronal death of hippocampal CA1 neurons following transient ischemia for 3 min in gerbils. (15S)-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin (15S-TIC), which nonselectively acts both on the PGI(2) receptor expressed in the peripheral tissue (IP(1)) and on IP(2), also showed a neuroprotective effect on such an ischemic model at higher doses than those for 15R-TIC and 15-deoxy-TIC. These PGI(2) analogs did not affect brain temperature, indicating that the agents showed the neuroprotective effect not by a hypothermic effect, but rather by the direct action on neurons.  相似文献   

12.
13.
We found that prostaglandin (PG) D(2), the most abundant PG in the central nervous system, stimulates food intake after intracerebroventricular administration in mice. The orexigenic effect of PGD(2) was mimicked by a selective agonist for the DP(1) receptor among two receptor subtypes for PGD(2), and abolished by its antagonist. Central administration of an antagonist or antisense oligodeoxynucleotide for the DP(1) receptor remarkably decreased food intake, body weight and fat mass. Hypothalamic mRNA levels of lipocalin-type PGD synthase were up-regulated after fasting. The orexigenic activity of PGD(2) was also abolished by an antagonist for neuropeptide Y (NPY) Y(1) receptor. Taken together, PGD(2) may stimulate food intake through central DP(1) receptor coupled to the NPY system.  相似文献   

14.
To clarify the molecular basis for the prostaglandin (PG) mediated effects in adipose cells at various stages of their development, expression of mRNAs encoding receptors specific for prostaglandin E2, F2alpha and I2 (i.e. EP, FP, and IP receptors) was investigated in differentiating clonal Ob1771 pre-adipocytes, as well as in mouse primary adipose precursor cells and mature adipocytes. We have further characterized the differential expression of mRNAs encoding three subtypes of the EP receptor, i.e. EP1, EP3, and EP4, and examined the expression of mRNAs encoding the three isoforms (alpha, beta, and gamma) of the EP3 receptor. Altogether the results show that the expression of IP, FP, EP1, and EP4 receptor mRNAs was considerably more pronounced in pre-adipose cells than in adipose cells, mRNAs encoding the alpha, beta, and gamma isoforms of the EP3 receptor were all exclusively expressed in freshly isolated mature adipocytes. These data may indicate that PGI2, PGF2alpha, and PGE2 may interact directly with specific receptors in pre-adipose cells, whose transduction mechanisms are known to affect maturation related changes. In mature adipocytes, however, the equipment of mRNAs encoding the EP3 receptor isoforms is in agreement with the well known effect of PGE2 on adenylate cyclase and lipolysis in mature adipocytes.  相似文献   

15.
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3'-kinase/MAPK pathway in the LbetaT2 gonadotrope cell line. We then demonstrated that PGF(2alpha) and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF(2alpha), but not PGI2 or PGE2, reduced GnRH-induction of LHbeta gene expression, but not the alpha-gonadotropin subunit or the FSHbeta subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF(2alpha), but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF(2alpha)-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer.  相似文献   

16.
Mesangial cells play an important role in glomerular function. They are an important source of cyclooxygenase (COX)-derived arachidonic acid metabolites, including prostaglandin E(2) and prostacyclin. Prostacyclin receptor (IP) mRNA was amplified from cultured mesangial cell total RNA by RT-PCR. While the prostaglandin E(2) receptor subtype EP(2) was not detected, EP(1,3,4) mRNA was amplified. Also, IP protein was noted in mesangial cells, proximal tubules, inner medullary collecting ducts, and the inner and outer medulla. But no protein was detected in whole cortex preparations. Prostacyclin analogues: cicaprost and iloprost, increased cAMP levels in mesangial cells. On the other hand, arginine-vasopressin and angiotensin II increased intracellular calcium in mesangial cells, but cicaprost, iloprost and prostaglandin E(2) had no effect. Moreover, a 50% inhibition of cicaprost- and iloprost-cAMP stimulation was observed upon mesangial cell exposure to 25 and 35 mM glucose for 5 days. But no change in IP mRNA was observed at any glucose concentration or time exposure. Although 25 mM glucose had no effect on COX-1 protein levels, COX-2 was increased up to 50%. In contrast, PGIS levels were reduced by 50%. Thus, we conclude that the prostacyclin/IP system is present in cultured rat mesangial cells, coupling to a cAMP stimulatory pathway. High glucose altered both enzymes in the PGI(2) synthesis pathway, increasing COX-2 but reducing PGIS. In addition, glucose diminished the cAMP response to prostacyclin analogues. Therefore, glucose attenuates the PGI(2)/IP system in cultured rat mesangial cells.  相似文献   

17.
18.
Airway epithelial cancer cells produce increased amounts of the chemokine interleukin-8 (IL-8), inducing pro-tumor responses. Multiple stimuli induce airway epithelial IL-8 production epidermal growth factor receptor (EGFR) dependently, but the mechanisms that exaggerate IL-8 production in airway cancers remain unknown. Here we show that direct activation of EGFR (EGFR-P) by its ligand transforming growth factor (TGF)-alpha induces a second EGFR-P in human airway (NCI-H292) cancer cells but not in normal human bronchial epithelial (NHBE) cells, exaggerating IL-8 production in these cancer cells. The second EGFR-P in NCI-H292 cells was caused by metalloprotease TNF-alpha-converting enzyme (TACE)-dependent cleavage of EGFR pro-ligands and was responsible for most of the total IL-8 induced by TGF-alpha. In NCI-H292 cells, TGF-alpha induced cyclooxygenase (COX)-2-dependent prostaglandin (PG)E2 production and release. PGE2 increased the second EGFR-P and IL-8 production via binding to its Gi-protein-coupled E-prostanoid (EP)3 receptor. In NHBE cells, TGF-alpha-induced EGFR-P did not lead to PGE2 production or to a second EGFR-P, and less IL-8 was produced. Thus, we conclude that a positive feedback pathway involving COX-2/PGE2/EP3 receptor-dependent EGFR reactivation exaggerates IL-8 production in NCI-H292 cancer cells but not in NHBE (normal) cells.  相似文献   

19.
Although peroxisome proliferator-activated receptor (PPAR) delta is widely expressed in many tissues, the role of PPARdelta is poorly understood. In this study, we report that PPARdelta was up-regulated in vascular smooth muscle cells (VSMC) during vascular lesion formation. By using Northern blot analysis, we demonstrated that PPARdelta was increased by 3-4-fold in VSMC treated with platelet-derived growth factor (PDGF) (20 ng/ml). In addition, PDGF-induced PPARdelta mRNA expression neither needs de novo protein synthesis nor affects the stability of PPARdelta mRNA in VSMC. Preincubation of VSMC with phosphatidylinositol 3-kinase inhibitor (LY294002, 50 micromol/liter) or infection of VSMC with an adenovirus carrying the gene for a dominant negative form of Akt abrogated PDGF-induced PPARdelta mRNA expression, suggesting that phosphatidylinositol 3-kinase/Akt signaling pathway is involved in the regulation of PDGF-induced PPARdelta mRNA expression in VSMC. To explore the role of PPARdelta in VSMC, we generated rat vascular smooth muscle cells (A7r5) stably overexpressing PPARdelta and the control green fluorescent protein. Overexpression of PPARdelta in VSMC increased post-confluent cell proliferation by increasing the cyclin A and CDK2 as well as decreasing p57(kip2). Taken together, the results suggest that PPARdelta plays an important role in the pathology of diseases associated with VSMC proliferation, such as primary atherosclerosis and restenosis.  相似文献   

20.
Transforming growth factor-ß1 (TGF-β1) is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL) induced downregulation of cyclooxygenase-2 (COX-2), leading to reduced synthesis of prostaglandin E2 (PGE2), in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT), a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components). Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号