首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Photoperiodic time measurement regulating larval diapause in the pitcher-plant mosquito, Wyeomyia smithii, varies in a close relationship with latitude. The critical photoperiod mediating the maintenance and termination of diapause is positively correlated with latitude (r 2 = 0.977) among six populations from southern (30–31° N), intermediate (40° N), and northern (46–49° N) latitudes in North America. The developmental response to unnaturally short and to unnaturally long photoperiods declines with increasing latitude, so that longer critical photoperiods are associated with a downward rather than a lateral shift in the photoperiodic response curve. Exotic light and dark cycles of varying period (T) with a short (10 h) photophase and a scotophase ranging from 14 (T = 24) to 62 (T = 72) h, reveal two geographic patterns: a decline in perturbability of the photoperiodic clock with increasing latitude, and no change with latitude in the 21-h period of rising and falling development with increasing T. These results show (1) that there is a rhythmic component to photoperiodic time measurement in W. smithii, (2) that the period of this rhythm is about 21 h in all populations, and (3) that more northern populations show decreasing responsiveness to photoperiod and increasing stability against perturbation by exotic period lengths (T > 24). Previous studies on W.␣smithii indicate that this single temperate species of a tropical and subtropical genus has evolved from south to north. We therefore conclude that the evolution of increasing critical photoperiod in W. smithii during its adaptive radiation into North America has more likely involved the amplitude and not the period of the underlying circadian pacemaker. Received: 22 July 1996 / Accepted: 30 September 1996  相似文献   

2.
The relationships between flowering plants and their insect visitors were studied in a Mediterranean grassland in north-east Spain. Floral traits (size, shape, symmetry, and colour), floral rewards (pollen and nectar), flowering period, and floral visitors were recorded for the 17 most abundant plants in the community. Flowering was year-round, but most species flowered in spring. The three species that flowered after spring had small flowers, but the distribution of floral features (including rewards offered) did not show a strong seasonality. Ants contributed 58.5% to the flower visits recorded. Other frequent visitors were beetles (12%), flies (9.5%), honey bees (6.4%), wild bees (6.4%), and wasps (5.2%). Honey bees were most abundant in April, wild bees from April to July, beetles from May to July, and ants from May to September. The lack of tight plant-insect associations was the rule, with most plant species visited by a rather diverse array of insects representing two or more orders. The plant species having narrower spectra of visitors either had flower rewards exposed or attracted mostly illegitimate visitors. By means of correspondence analysis four categories of plants were defined according to their main groups of visitors: (1) honey bees and large wild bees; (2) large wild bees; (3) ants and beetles; and (4) beetles and small-sized bees. The Mantel test was used to calculate correlations among four matrices representing similarities in visitors attracted, floral morphological traits, pollen-nectar rewards, and blooming time, respectively. In spite of seasonality shown by the different insect groups, results indicate that the observed patterns of visitor distribution among plants were most affected by pollen-nectar rewards. Received: 28 May 1996 / Accepted: 19 October 1996  相似文献   

3.
Harald Auge  Roland Brandl 《Oecologia》1997,110(2):205-211
The clonal shrub, Mahonia aquifolium, is an aggressive invader of some forests in central Germany. We analysed the importance of seedling recruitment for the local dynamics of these invasive populations. In contrast to many other clonal plants, repeated seedling recruitment takes place in M. aquifolium, contributing to the colonization of available space within populations. Thus, sexual reproduction is not only important for dispersal to new sites but also for the local invasion␣process. In situations with grass competition (Calamagrostis epigejos) the number of successful recruits is reduced, and clonal growth is the predominant mode of reproduction. Since seedling recruitment results in an increasing number of genets as well as ramets, the investigated populations are still below their carrying capacities. Seedling densities are higher beneath the canopy of adults than outside adult patches, and increase with increasing cover of adult ramets. The spatially clumped pattern of seedling emergence results in density-dependent mortality especially in the most crowded seedling clusters. However, adult neighbourhood imposes a much higher mortality. Therefore, we expect that the importance of seedling recruitment for the dynamics of local M. aquifolium populations will decline as the invasion process continues. Received: 15 January 1996 / Accepted: 28 September 1996  相似文献   

4.
We investigated how infection by the mermithid nematode Gasteromermis sp. affected predation on its nymphal mayfly host, Baetisbicaudatus, by two invertebrate predators – the stonefly nymphs of Kogotusmodestus and the caddisfly larvae of Rhyacophilahyalinata. Predation trials and behavioral observations were conducted in stream-side, flow-through experimental chambers. When parasitized and unparasitized prey were offered in equal numbers, K. modestus consumed significantly more parasitized than unparasitized nymphs. R. hyalinata consumed equal numbers of both prey types. Behavioral observations of foraging K.␣modestus on parasitized and unparasitized prey suggested that the increased consumption of parasitized nymphs was due to differences in the behavior of infected mayflies in response to the predator. Specifically, parasitized nymphs drifted less often to escape an approaching predator (non-contact encounters) compared to unparasitized nymphs, which increased the number of contact encounters and attacks that occurred between K.␣modestus and parasitized prey. Because all hosts are castrated, these behavioral alterations affect only the fitness of the parasite, which is killed along with its host by invertebrate predation. We present a number of hypotheses to explain why the parasite causes increased predation on its host. These include the large size of the parasite affecting the sensory abilities of the host, the larger energetic costs of escape behavior for parasitized individuals, and natural selection from fish predation against drifting behavior by parasitized individuals. Received: 27 May 1996 / Accepted: 30 September 1996  相似文献   

5.
The vertical profile of stable carbon isotope ratios (δ13C) of leaves was analyzed for 13 tree species in a cool-temperate deciduous forest in Japan. The vertical distribution of long-term averaged δ13C in atmospheric CO2a) was estimated from δ13C of dry matter from NADP-malic enzyme type C4 plant (Zea mays L. var. saccharata Sturt.) grown at a tower in the forest for 32␣days, assuming constant Δ value (3.3‰) in Z. mays against height. The δa value obtained from δ13C in Z.␣mays was lowest at the forest floor (−9.30 ± 0.03‰), increased with height, and was almost constant above 10␣m (−7.14 ± 0.14‰). Then leaf Δ values for the tree species were calculated from tree leaf δ13 C andδa. Mean leaf Δ values for the three tall deciduous species (Fraxinus mandshurica, Ulmus davidiana, and Alnus hirsuta) were significantly different among three height levels in the forest: 23.1 ± 0.7‰ at the forest floor (understory), 21.4 ± 0.5‰ in lower canopy, and 20.5 ± 0.3‰ in upper canopy. The true difference in tree leaf Δ among the forest height levels might be even greater, because Δ in Z. mays probably increased with shading by up to ∼‰. The difference in tree leaf Δ among the forest height levels would be mainly due to decreasing intercellular CO2 (C i) with the increase in irradiance. Potential assimilation rate for the three tree species probably increased with height, since leaf nitrogen content on an area basis for these species also increased with height. However, the increase in stomatal conductance for these tree species would fail to meet the increase in potential assimilation rate, which might lead to increasing the degree of stomatal limitation in photosynthesis with height. Received: 30 September 1995 / Accepted: 25 October 1996  相似文献   

6.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

7.
Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial “flowers” that provided a sucrose reward, we compared species’ dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines.  相似文献   

8.
Large floral displays should theoretically provide advantages to plants through increased pollinator visitation and resulting fruit and seed set. However empirical tests of the response of pollinators to floral display size have been limited by a lack of direct experimentation, and the results of such studies have been equivocal. In addition, other selective agents such as pre-dispersal seed predators might modulate effects of floral display on pollination. By artificially altering flower number, we examined the direct effects of floral display in the monocarpic herb, Ipomopsis aggregata (Polemoniaceae), on visitation rates by broad-tailed and rufous hummingbird pollinators, as well destruction of fruits by a pre-dispersal seed predator (Hylemya: Anthomyiidae). In addition, we quantified the ultimate effects of flower number on female reproductive success. Plants with larger floral displays were most likely to be visited first in any given foraging bout (P < 0.01). As expected, plants with more flowers received more total flower visits. However, we found no gain in the proportion of flowers visited for many- versus few-flowered plants, or the total number of approaches/hour. In fact, a significantly greater percentage of flowers were visited on few-flowered plants. Plants did not compensate for our reduction in flowers by increasing investment in the number or proportion of flowers that set fruit, the number of seeds/fruit, or seed weight. Pre-dispersal seed predation was greater for many- than for few-flowered plants (P < 0.001), but this did not offset the potential fitness gains of producing large displays. Our data support the hypothesis that large floral displays function primarily in long-distance attraction of pollinators, and enhance maternal success. Received: 21 March 1996 / Accepted: 24 October 1996  相似文献   

9.
1. The distribution of consumers among resources (trophic interaction network) may be shaped by asymmetric competition. Dominance hierarchy models predict that asymmetric interference competition leads to a domination of high quality resources by hierarchically superior species. 2. In order to determine the competitive dominance hierarchy and its effect on flower partitioning in a local stingless bee community in Borneo, interspecific aggressions were tested among eight species in arena experiments. 3. All species tested were strongly mutually aggressive in the arena, and the observed interactions were often lethal for one or both opponents. Aggression significantly increased with body size differences between fighting pairs and was asymmetric: larger aggressors were superior over smaller species. Additional aggression tests involved dummies with surface extracts, and results suggest that species‐ and colony‐specific surface profiles are important in triggering the aggressive behaviour. 4. Sixteen stingless bee species were observed foraging on 41 species of flowering plants. The resulting bee–flower interaction network showed a high degree of generalisation (network‐level specialisation H2’ = 0.11), corresponding to a random, opportunistic distribution of bee species among available flower species. 5. Aggressions on flowers were rare and only occurred at a low level. The dominance hierarchy obtained in the arena experiments did not correlate significantly with plant quality, estimated as the number of flowers per plant or as total bee visitation rate. 6. Our findings suggest that asymmetries in interference competition do not necessarily translate into actual resource partitioning in the context of complex interacting communities.  相似文献   

10.
Though field data for naturally senesced leaf litter are rare, it is commonly assumed that rising atmospheric CO2 concentrations will reduce leaf litter quality and decomposition rates in terrestrial ecosystems and that this will lead to decreased rates of nutrient cycling and increased carbon sequestration in native ecosystems. We generally found that the quality of␣naturally senesced leaf litter (i.e. concentrations of C, N and lignin; C:N, lignin:N) of a variety of native plant species produced in alpine, temperate and tropical communities maintained at elevated CO2 (600–680 μl l−1) was not significantly different from that produced in similar communities maintained at current ambient CO2 concentrations (340–355 μl l−1). When this litter was allowed to decompose in situ in a humid tropical forest in Panama (Cecropia peltata, Elettaria cardamomum, and Ficus benjamina, 130 days exposure) and in a lowland temperate calcareous grassland in Switzerland (Carex flacca and a graminoid species mixture; 261 days exposure), decomposition rates of litter produced under ambient and elevated CO2 did not differ significantly. The one exception to this pattern occurred in the high alpine sedge, Carex curvula, growing in the Swiss Alps. Decomposition of litter produced in situ under elevated CO2 was significantly slower than that of litter produced under ambient CO2 (14% vs. 21% of the initial litter mass had decomposed over a 61-day exposure period, respectively). Overall, our results indicate that relatively little or no change in leaf litter quality can be expected in plant communities growing under soil fertilities common in many native ecosystems as atmospheric CO2 concentrations continue to rise. Even in situations where small reductions in litter quality do occur, these may not necessarily lead to significantly slower rates of decomposition. Hence in many native species in situ litter decomposition rates, and the time course of decomposition, may remain relatively unaffected by rising CO2. Received: 12 September 1996 / Accepted: 30 November 1996  相似文献   

11.
12.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area. Received: 14 November 1996 / Accepted: 29 November 1996  相似文献   

13.
S. D. Johnson  W. J. Bond 《Oecologia》1997,109(4):530-534
We used spot checks of stigmatic pollen deposition and hand-pollination experiments to test whether fruit production in Cape wildflower populations is limited by pollen availability. Natural levels of stigmatic pollen deposition were very low (median = 30.0% of flowers) in populations of 33 orchid species. We found similarly low levels of fruit set (median = 32% of flowers per plant) in six Orchidaceae and four Amaryllidaceae species. Experimental hand pollination at the whole plant level caused significant increases in fruit production in 11 of the 12 study populations. These results indicate that pollen limitation of fruit set may occur frequently among some plant families in the Cape flora. Received: 15 April 1996 / Accepted: 10 November 1996  相似文献   

14.
Plants under herbivore attack produce volatiles, thus attracting natural enemies of the herbivores. However, in doing so, the plant becomes more conspicuous to other herbivores. Herbivores may use the odours as a cue to refrain from visiting plants that are already infested, thereby avoiding competition for food, or, alternatively, to visit plants with defences weakened by earlier attacks. We investigated the response of one species of herbivore (the spider mite Tetranychus urticae) to odours emanating from cucumber plants infested by conspecific or heterospecific (the western flower thrips, Frankliniella occidentalis) herbivores. Olfactometer experiments in the laboratory showed that spider mites have a slight, but significant, preference for plants infested with conspecifics, but strongly avoid plants with thrips. These results were substantiated with greenhouse experiments. We released spider mites on the soil in the centre of a circle of six plants, half of which were infested with either conspecifics or heterospecifics (thrips), whereas the other half were uninfested. It was found that 60–70% of the mites were recaptured on the plants within 5 h after release. Results of these experiments were in agreement with results of the olfactometer experiments: (1) significantly fewer spider mites were found on plants infested with thrips than on uninfested plants and (2) more mites were found on plants with conspecifics than on clean plants (although this difference was not significant). From a functional point of view it makes sense that spider mites prefer clean plants over thrips-infested plants, since thrips are not only competitors, but are also known as intraguild predators of spider mites. Possible reasons for the slight attraction of spider mites to plants infested with conspecifics are discussed. Received: 22 June 1996 / Accepted: 29 September 1996  相似文献   

15.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

16.
This study examined hypertrophy after head extension resistance training to assess which muscles of the complicated cervical neuromuscular system were used in this activity. We also determined if conventional resistance exercises, which are likely to evoke isometric action of the neck, induce generalized hypertrophy of the cervical muscle. Twenty-two active college students were studied. [mean (SE) age, weight and height: 21 (1) years, 71 (4) kg and 173 (3) cm, respectively]. Subjects were assigned to one of three groups: RESX (head extension exercise and other resistance exercises), RES (resistance exercises without specific neck exercise), or CON (no training). Groups RESX (n = 8) and RES (n = 6) trained 3 days/week for 12 weeks with large-muscle mass exercises (squat, deadlift, push press, bent row and mid-thigh pull). Group RESX also performed three sets of ten repetitions of a head extension exercise 3 days/week with a load equal to the 3 × 10 repetition maximum (RM). Group CON (n = 8) was a control group. The cross-sectional area (CSA) of nine individual muscles or muscle groups was determined by magnetic resonance imaging (MRI) of the cervical region. The CSA data were averaged over four contiguous transaxial slices in which all muscles of interest were visible. The 3 × 10 RM for the head extension exercise increased for RESX after training [from 17.9 (1.0) to 23.9 (1.4) kg, P < 0.05] but not for RES [from 17.6 (1.4) to 17.7 (1.9)␣kg] or CON [from 10.1 (2.2) to 10.3 (2.1) kg]. RESX showed an increase in total neck muscle CSA after training [from 19.5 (3.0) to 22.0 (3.6) cm2, P < 0.05], but RES and CON did not [from 19.6 (2.9) to 19.7 (2.9)␣cm2 and 17.0 (2.5) to 17.0 (2.4) cm2, respectively]. This hypertrophy for RESX was due mainly to increases in CSA of 23.9 (3.2), 24.0 (5.8), and 24.9 (5.3)% for the splenius capitis, and semispinalis capitis and cervicis muscles, respectively. The lack of generalized neck muscle hypertrophy in RES was not due to insufficient training. For example, the CSA of their quadriceps femoris muscle group, as assessed by MRI, increased by 7 (1)% after this short-term training (P < 0.05). The results suggest that: (1) the splenius capitis, and semispinalis capitis and cervicis muscles are mainly responsible for head extension; (2) short-term resistance training does not provide a sufficient stimulus to evoke neck muscle hypertrophy unless specific neck exercises are performed; and (3) the postural role of head extensors provides modest loading in bipeds. Accepted: 15 October 1996  相似文献   

17.
Using an exclosure experiment in the willow stage of primary succession on the floodplain of the Tanana River, we tested the hypothesis that browsing can reduce mycorrhizal infection. We measured the effects winter browsing by moose (Alcesalces) and snowshoe hare (Lepusamericanus) had on mycorrhizal infection and fine root biomass of willow (Salix spp.) and balsam poplar (Populusbalsamifera). We found that protection from winter browsing increased ectomycorrhizal infection by 10% in the top 5 cm of the soil profile, by 23% at 5–10 cm, and by 42% at the 10–15 cm depth. Mammal browsing in taiga forests is now recognized as a major cause of the shift from palatable deciduous species such as willow and balsam poplar to less palatable species such as alder and spruce. We suggest that browsing-induced reduction in ectomycorrhizal infection of salicaceous species plays a central role in this shift in plant community composition. Received: 26 March 1996 / Accepted: 26 September 1996  相似文献   

18.
19.
20.
A survey of root pressures in vines of a tropical lowland forest   总被引:6,自引:0,他引:6  
Pre-dawn xylem pressures were measured with bubble manometers attached near the stem bases of 32 species of vines on Barro Colorado Island, Panama, to determine if pressures were sufficient to allow for possible refilling of embolized vessels. Of 29 dicotyledonous species 26 exhibited only negative xylem pressures, even pre-dawn during the wet season. In contrast, three members of the Dilleniaceae exhibited positive pre-dawn xylem pressures, with a maximum of 64 kPa in Doliocarpusmajor. A pressure of 64 kPa is sufficient to push water to a height of 6.4 m against gravity, but the specimens reached heights of 18 m. Thus, in all 29 dicotyledons examined, the xylem pressures were not sufficient to refill embolized vessels in the upper stems. In contrast, two of the smaller, non-dicotyledonous vines, the climbing fern Lygodiumvenustrum and the viny bamboo Rhipidocladumracemiflorum, had xylem pressures sufficient to push water to the apex of the plants. Therefore, a root pressure mechanism to reverse embolisms in stem xylem could apply to some but not to most of the climbing plants that were studied. Received: 18 March 1996 / Accepted: 24 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号