首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Echolocating bats cry out loud to detect their prey   总被引:1,自引:0,他引:1  
Surlykke A  Kalko EK 《PloS one》2008,3(4):e2036
Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar hunting habits, prey detection range represents a unifying constraint on the emitted intensity largely independent of call shape, body size, and close phylogenetic relationships.  相似文献   

2.
The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a ‘monotonous’ sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 kHz (high-note call). The frequencies of these low–high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy for prey detection at the edge of complex habitat in this ancient family of bats.  相似文献   

3.
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.  相似文献   

4.
Echolocating bats are regularly studied to investigate auditory‐guided behaviors and as important bioindicators. Bioacoustic monitoring methods based on echolocation calls are increasingly used for risk assessment and to ultimately inform conservation strategies for bats. As echolocation calls transmit through the air at the speed of sound, they undergo changes due to atmospheric and geometric attenuation. Both the speed of sound and atmospheric attenuation, however, are variable and determined by weather conditions, particularly temperature and relative humidity. Changing weather conditions thus cause variation in analyzed call parameters, limiting our ability to detect, and correctly analyze bat calls. Here, I use real‐world weather data to exemplify the effect of varying weather conditions on the acoustic properties of air. I then present atmospheric attenuation and speed of sound for the global range of weather conditions and bat call frequencies to show their relative effects. Atmospheric attenuation is a nonlinear function of call frequency, temperature, relative humidity, and atmospheric pressure. While atmospheric attenuation is strongly positively correlated with call frequency, it is also significantly influenced by temperature and relative humidity in a complex nonlinear fashion. Variable weather conditions thus result in variable and unknown effects on the recorded call, affecting estimates of call frequency and intensity, particularly for high frequencies. Weather‐induced variation in speed of sound reaches up to about ±3%, but is generally much smaller and only relevant for acoustic localization methods of bats. The frequency‐ and weather‐dependent variation in atmospheric attenuation has a threefold effect on bioacoustic monitoring of bats: It limits our capability (1) to monitor bats equally across time, space, and species, (2) to correctly measure frequency parameters of bat echolocation calls, particularly for high frequencies, and (3) to correctly identify bat species in species‐rich assemblies or for sympatric species with similar call designs.  相似文献   

5.
6.
In tropical rainforests environmental conditions vary dramatically from the ground to the canopy, resulting in a marked stratification in the way vertical space is used by organisms, but research work is often limited to the understorey layer. Aerial insectivorous bats are a highly diverse group that plays key roles in the ecology of rainforests, but their use of vertical space remains elusive. Using automatic ultrasound recording stations placed in the canopy, subcanopy and understorey we tested if bat activity and species diversity are vertically stratified, both in the forest interior and near the edges of water bodies. These patterns were tested separately for individual species, and for two functional groups – open space and edge space bats. Insectivorous bat activity increased by roughly seven fold, and species diversity doubled, from the understorey to the canopy. Both edge space and open space bats were more active in the upper strata, but this tendency was much more accentuated in the latter. Myotis riparius was the only species with greater activity near the understorey. These patterns were altered at the edges of water bodies, where vertical stratification was much less marked. The observed patterns are parsimoniously explained by constraints imposed by vegetation clutter that change across strata, which affect bat species differently. Only bats better adapted to closed spaces are usually capable of foraging within the understorey, whereas the majority of species can exploit the free spaces immediately below the canopy; open space bats seem to concentrate their activity above the canopy. This importance of the inter strata open spaces for bat foraging highlights the need to preserve pristine stratified rainforests, as even selective logging usually disrupts vertical stratification. Moreover, the concentration of insectivorous bats at the upper strata of rainforests underlines the need to include canopy level sampling in ecological studies.  相似文献   

7.
Poor knowledge of the intraspecific variability in echolocation calls is recognized as an important limiting factor for the accurate acoustic identification of bats. We studied the echolocation behaviors of an ecologically poorly known bat species, Myotis macrodactylus, while they were commuting in three types of habitats differing significantly in the amount of background clutter, as well as searching for prey above the water surface in a river. Results showed that M. macrodactylus altered their echolocation call structure in the same way during commuting as foraging bats do in relation to the changing level of clutter. With increasing level of clutter, M. macrodactylus generally produced echolocation calls with higher start, end, and peak frequencies; wider bandwidth; and shorter pulse duration. Compared to commuting, bats emitted significantly lower frequency calls with narrower bandwidth while searching for prey. Discriminant function analysis indicated that 79.8% of the calls from the three commuting habitats were correctly grouped, and 87% of the calls were correctly classified to the commuting and foraging contexts. Our finding has implications for those who would identify species by their calls.  相似文献   

8.
In habitats where prey is either rare or difficult to predict spatiotemporally, such as open habitats, predators must be adapted to react effectively to variations in prey abundance. Open-habitat foraging bats have a wing morphology adapted for covering long distances, possibly use information transfer to locate patches of high prey abundance, and would therefore be expected to show an aggregative response at these patches. Here, we examined the effects of prey abundance on foraging activities of open-habitat foragers in comparison to that of edge-habitat foragers and closed-habitat foragers. Bat activity was estimated by counting foraging calls recorded with bat call recorders (38,371 calls). Prey abundance was estimated concurrently at each site using light and pitfall traps. The habitat was characterized by terrestrial laser scanning. Prey abundance increased with vegetation density. As expected, recordings of open-habitat foragers clearly decreased with increasing vegetation density. The foraging activity of edge- and closed-habitat foragers was not significantly affected by the vegetation density, i.e., these guilds were able to forage from open habitats to habitats with dense vegetation. Only open-habitat foragers displayed a significant and proportional aggregative response to increasing prey abundance. Our results suggest that adaptations for effective and low-cost foraging constrains habitat use and excludes the guild of open-habitat foragers from foraging in habitats with high prey abundance, such as dense forest stands.  相似文献   

9.
Interspecific differences in traits can alter the relative niche use of species within the same environment. Bats provide an excellent model to study niche use because they use a wide variety of behavioral, acoustic, and morphological traits that may lead to multi‐species, functional groups. Predatory bats have been classified by their foraging location (edge, clutter, open space), ability to use aerial hawking or substrate gleaning and echolocation call design and flexibility, all of which may dictate their prey use. For example, high frequency, broadband calls do not travel far but offer high object resolution while high intensity, low frequency calls travel further but provide lower resolution. Because these behaviors can be flexible, four behavioral categories have been proposed: (a) gleaning, (b) behaviorally flexible (gleaning and hawking), (c) clutter‐tolerant hawking, and (d) open space hawking. Many recent studies of diet in bats use molecular tools to identify prey but mainly focus on one or two species in isolation; few studies provide evidence for substantial differences in prey use despite the many behavioral, acoustic, and morphological differences. Here, we analyze the diet of 17 sympatric species in the Chihuahuan desert and test the hypothesis that peak echolocation frequency and behavioral categories are linked to differences in diet. We find no significant correlation between dietary richness and echolocation peak frequency though it spanned close to 100 kHz across species. Our data, however, suggest that bats which use both gleaning and hawking strategies have the broadest diets and are most differentiated from clutter‐tolerant aerial hawking species.  相似文献   

10.
11.
蝙蝠回声定位声波的可塑性对其适应不同状态、生境以及捕食和社会交流具有重要的作用。为进一步研究大蹄蝠的回声定位声波在不同状态和生境下的可塑性,通过室内行为实验,对大蹄蝠在4 种不同状态(室内飞行、静息、布袋内和手持)和4 种不同生境复杂度(室外、室内0 棵树、室内1 棵树、室内5 棵树)条件下飞行的回声定位声波特征进行研究。结果表明:大蹄蝠的回声定位声波为CF - FM 型,通常连续发出2 - 4 个脉冲组成一个脉冲组。对比大蹄蝠在4 种不同状态下的回声定位叫声发现,主频按静息、布袋内、手持、飞行的顺序依次降低,后端FM 频宽则按手持、布袋内、飞行和静息的顺序依次变短;而脉冲间隔和脉冲时程则均按静 息、飞行、布袋内、手持的顺序依次增加。对比大蹄蝠在4 种不同生境复杂度中飞行的回声定位叫声发现,主频按室外、室内0 棵树、室内1 棵树、室内5 棵树依次提高,而脉冲时程及脉冲间隔则依次缩短;室外放飞条件下的后端FM 频宽比室内飞行的短。研究结果说明,大蹄蝠在不同状态、不同生境复杂度条件下的回声定位叫声具有明显的可塑性和生境适应性。  相似文献   

12.
Abstract: We compared bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 m) in each habitat type. Variation in vegetative clutter among sampling heights and among habitat types allowed us to examine the differential effect of forest vegetation on the spatial activity patterns of clutter-adapted and open-adapted bat species. Moreover, monitoring activity at 30, 10, and 2 m permitted us to also compare bat activity above and below the forest canopy. We detected calls of 5 species or species groups: eastern red/Seminole bats (Lasiurus borealis/L. seminolus), eastern pipistrelles (Pipistrellus subflavus), evening bats (Nycticeius humeralis), big brown bats (Eptesicus fuscus), and hoary bats (Lasiurus cinerius). At 2 and 10 m, bat activity was concentrated in riparian areas, whereas we detected relatively low levels of bat activity in upland habitats at those heights. Activity was more evenly distributed across the landscape at 30 m. Bat activity levels above the forest canopy were almost 3 times greater than within or below the canopy. We detected significantly greater activity levels of 2 open-adapted species (hoary and big brown bats) above rather than within or below the forest canopy. However, activity levels of 2 clutter-adapted species (eastern red/Seminole bats and eastern pipistrelles) did not differ above, within, or below the forest canopy. Despite classification as a clutter-adapted species, evening bat activity was greater above rather than within or below the forest canopy. We believe our results highlight the importance of riparian areas as foraging habitat for bats in pine-dominated landscapes in the southeastern United States. Although acoustical surveys conducted below forest canopies can provide useful information about species composition and relative activity levels of bats that forage in cluttered environments, our results showing activity above canopy suggest that such data may not accurately reflect relative activity of bats adapted to forage in more open conditions, and therefore may provide an inaccurate picture of bat community assemblage and foraging habitat use.  相似文献   

13.
Modern advances in acoustic technology have made possible new and broad ranges of research in bioacoustics, particularly with regard to echolocating bats. In the present study, we present an acoustic guide to the calls of 15 species of bats in the Arava rift valley, Israel, with a focus on their bioacoustics, habitat use and explaining differences between similar species. We also describe a potential case of frequency separation where four bat species using six call types appear to separate the frequencies of their calls to minimize overlap. The studied community of bat species is also found in other Middle Eastern deserts including the deserts of Jordan, Syria and Saudi Arabia and we hope that data gathered will benefit other bat researchers in the region.  相似文献   

14.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

15.
As the only mammals capable of powered flight, bats make efficient use of the aerosphere. Yet, our understanding of how bats use the three‐dimensional air column is sketchy. By attaching miniaturised Global Positioning System tags to cave bats near a mountain ridge in Thailand, we show that these bats perform undulating ascending and descending flights in quick succession. Bats repeatedly used mountain slopes to ascend to altitudes of more than 550 m above the ground. We infer that mountain ridges are key habitat features for some open‐space foraging bats, facilitating altitudinal movements which may aid effective foraging and navigation. Therefore, the development of wind farms along mountain ridges might lead to conflicts with the conservation of some open‐space foraging bats.  相似文献   

16.
While searching for prey, Molossus molossus broadcasts narrow-band calls of 11.42 ms organized in pairs of pulses that alternate in frequency. The first signal of the pair is at 34.5 kHz, the second at 39.6 kHz. Pairs of calls with changing frequencies were only emitted when the interpulse intervals were below 200 ms. Maximum duty cycles during search phase are close to 20%. Frequency alternation of search calls is interpreted as a mechanism for increasing duty cycle and thus the temporal continuity of scanning, as well as increasing the detection range. A neurophysiological correlate for the processing of search calls was found in the inferior colliculus. 64% of neurons respond to frequencies in the 30- to 40-kHz range and only in this frequency range were closed tuning curves found for levels below 40 dB SPL. In addition, 15% of the neurons have double-tuned frequency-threshold curves with best thresholds at 34 and 39 kHz. Differing from observations in other bats, approach calls of M. molossus are longer and of higher frequencies than search calls. Close to the roost, the call frequency is increased to 45.0–49.8 kHz and, in addition, extremely broadband signals are emitted. This demonstrates high plasticity of call design.Abbreviations BF best frequency - CF constant frequency - IC inferior colliculus - Fmax maximal frequency - Fmin minimal frequency - PF peak frequency - PSTH post-stimulus time histogram - QCF quasi-constant frequency - SPL sound pressure level  相似文献   

17.
While searching for prey in open spaces, Epteisicus fuscus emits long-duration, downward frequency-modulated calls which cover a frequency band of about 28-22 kHz. In the ascending auditory pathways of E. fuscus, neurons tuned to these search call frequencies are characterised by a remarkably high frequency selectivity and very sensitive absolute thresholds. We investigated whether this narrow tuning is reflected in an exceptional psychoacoustic frequency discrimination ability. The average frequency difference limen of E. fuscus at search call frequencies determined in a two-alternative, forced-choice experiment amounted to about 420 Hz, corresponding to a Weber ratio of 0.017. This value is similar to those found in non-echolocating mammals, and an order of magnitude larger than the frequency difference limens of bats emitting constant-frequency call components. We discuss these differences in frequency difference limen, and relate them to different echolocation strategies.  相似文献   

18.
Gareth  Jones 《Journal of Zoology》1995,237(2):303-312
The noctule Nyctulus noctula (Schreber, 1774) is a relatively large (c. 25 g) insectivorous bat which catches insects on the wing (by aerial hawking). Emergence at a maternity roost was earliest relative to sunset when females were lactating, and bats may then have risked predation by flying at higher light levels during a period of high energy demand. Flight performance was quantified by using stereophotogrammetry. At feeding sites bats flew at 6.0 ± 2.1 m/s. This was faster than predicted minimum power speed (V mp), and either between V mp and maximum range speed (V mr), or close to their predicted V mr, depending on which aerodynamic model of flight power requirements was used. The echolocation behaviour of noctules is flexible. Long duration, low frequency calls (c. 20 kHz) with little frequency modulation were emitted while cruising, but at foraging sites the calls became more frequency-modulated. As the noctule is traditionally thought of as using low frequency echolocation, it was expected to receive weak echoes from small targets and therefore to specialize in eating large insect prey. Although the bats ate mainly beetles, large numbers of small dipterans were also eaten. The noctule is probably able to detect such small items because, when foraging, its calls become broadband and sweep from high frequencies. Higher harmonics are also present, and these may assist in the detection of small prey. In noctules, as in many bats, there appears to be a 1:1 link between wingbeat and call production during the search phase of foraging.  相似文献   

19.
Echolocation calls from 10 individually marked female northern bats (Eptesicus nilssonii) were recorded as the bats foraged at three distinct feeding sites (territories) near their maternity roost in southern Sweden (57° N). In addition, recordings of unmarked bats were made in northern Sweden (65° N). The frequency at maximum amplitude of “search phase” echolocation pulses was bimodally distributed, with peaks around 29–30 kHz and 31–32 kHz and was negatively correlated with pulse duration. The frequency at maximum amplitude was related to flight altitude (bats used higher frequencies when they flew near the ground) and also differed among the feeding sites. Hence, much of the variation, probably including regional differences, was behavioural and is interpreted as short term (in the order of s or min) adaptation to current foraging situations. Variation among individual bats, caused by age and size, seemed to be of less importance. Individuals did not use exclusive frequency bands.  相似文献   

20.
We report on acoustic surveys of insectivorous bats conducted during seven months of the year using ANABAT recordings in two habitats (macadamia orchards and adjacent riparian bush) in a subtropical agro‐ecosystem in northern South Africa. We defined two functional foraging groups of bats based on their echolocation calls: (i) open‐air foragers (family Molossidae) having narrow‐band, low‐frequency, low duty cycle calls; and (ii) clutter‐edge foragers (families Miniopteridae and Vespertilionidae), having broad‐band, higher frequency, low duty cycle calls. Bat activity (number of bat passes) was not significantly influenced by habitat. Total bat activity and activity of both functional groups varied significantly between seasons, being highest in summer and autumn (coinciding with annual peaks in numbers of Twin spotted (Bathycoelia natalicola) and Green (Nezara spp) Stinkbugs, order Heteroptera, family Pentatomidae, and Macadamia Nut Borer moths, Cryptophlebia ombrodelta) and lower in winter and spring. No significant effect of moon phase was detected, either on total activity or activity of the two functional groups. We postulate that the significant pattern of seasonality of commuting and/or foraging activity of bats in macadamia orchards (which is more marked in open‐air foragers) may be driven by the seasonal abundance of pest insects such as stinkbugs and Macadamia Nut Borer moths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号