首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
  相似文献   

3.
4.
5.
6.
7.
8.
9.
Several temperature-sensitive mutants of vesicular stomatitis virus in complementation group III produce, at nonpermissive temperature, noninfectious particles which contain the viral M (matrix) and G (glycoprotein) proteins but less than 10% of the normal proportion of N protein or RNA. Since group III mutants are thought to be defective in the structural gene for the virus M protein, these findings demonstrate that an interaction between M and the nucleocapsid is of importance in virus budding. Taken together with earlier results, they suggest that M is the key protein in bud formation.  相似文献   

10.
Simian virus 40 large T antigen is a multifunctional protein which exists in different molecular weight forms. According to several reports, T antigen encoded by temperature-sensitive simian virus 40 A locus mutants (tsA) is unable to oligomerize into high-molecular-weight species. To try to correlate structural and functional properties, we selected tsA58 and tsA1499, both of which are heat sensitive for lytic growth, but only tsA58 is heat sensitive for transformation. Here we report that at permissive and nonpermissive temperatures, T antigen from tsA1499-infected monkey cells retained the ability to oligomerize, whereas reported previously, tsA58 T antigen failed to oligomerize at the nonpermissive temperature. Furthermore, we studied the formation of complexes between T antigen and the cellular p53 protein (T-p53) late in infection. Corresponding to its heat-stable oligomerization properties, T antigen encoded by tsA1499 formed T-p53 complexes regardless of temperature. In contrast, tsA58 encoded T-p53 complexes, preformed at the permissive temperature, remained heat stable after shifting up to the nonpermissive temperature; but at this temperature no new T-p53 complexes arose. The mutants did not replicate viral DNA at the nonpermissive temperature, suggesting that neither the oligomerization of T antigen nor the formation of T-p53 complexes seems to be sufficient for viral DNA replication or for the expression of late viral proteins.  相似文献   

11.
12.
13.
14.
Antibodies which completely inhibited the enzymatic activity of the protein kinase associated with virions of frog virus were obtained by immunization of rabbits with the purified enzyme. This inhibition provided a specific probe for the frog virus protein kinase, since this antiserum had no inhibitory effect on a variety of other protein kinases, including the activity of uninfected cells, or the protein kinase associated with vesicular stomatitis virus or vaccinia virus cultivated in the same cell line as frog virus. The frog virus protein kinase was characterized as a virus-specified protein on the basis of the following observations: (a) the virion protein kinase was antigenically distinct from essentially all of the protein kinase expressed in uninfected cells; (b) following infection by frog virus more than a 15-fold increase was detected in the specific activity of intracellular protein kinase and most of this activity was antigenically related to the virion enzyme; (c) when frog virus was grown in cells derived from widely different species, the antigenic and biochemical specificities of the virion protein kinase remained identical; and (d) screening of cells infected with different temperature-sensitive mutants of frog virus indicated that certain viral mutants failed to synthesize this protein kinase when cultivated at the nonpermissive temperature.  相似文献   

15.
16.
The matrix (M1) protein of influenza virus is a major structural component, involved in regulation of viral ribonucleoprotein transport into and out of the nucleus. Early in infection, M1 is distributed in the nucleus, whereas later, it is localized predominantly in the cytoplasm. Using immunofluorescence microscopy and the influenza virus mutant ts51, we found that at the nonpermissive temperature M1 was retained in the nucleus, even at late times after infection. In contrast, the viral nucleoprotein (NP), after a temporary retention in the nucleus, was distributed in the cytoplasm. Therefore, mutant M1 supported the release of the viral ribonucleoproteins from the nucleus, but not the formation of infectious virions. The point mutation in the ts51 M1 gene was predicted to encode an additional phosphorylation site. We observed a substantial increase in the incorporation of 32Pi into M1 at the nonpermissive temperature. The critical role of this phosphorylation site was demonstrated by using H89, a protein kinase inhibitor; it inhibited the expression of the mutant phenotype, as judged by M1 distribution in the cell. Immunofluorescence analysis of ts51-infected cells after treatment with H89 showed a wild-type phenotype. In summary, the data indicated that the ts51 M1 protein was hyperphosphorylated at the nonpermissive temperature and that this phosphorylation was responsible for its aberrant nuclear retention.  相似文献   

17.
18.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

19.
By marker rescue with cloned herpes simplex virus 2 DNA fragments, we have mapped the temperature-sensitive mutations of a series of herpes simplex virus 2 mutants to a region of the herpes simplex virus 2 genome that lies within or near the coding sequences for the major DNA-binding protein, ICP8. In cells infected with certain of these mutants at the nonpermissive temperature, the association of the major DNA-binding protein with the cell nucleus was defective. In these cells, the DNA-binding protein accumulated in the cytoplasmic and the crude nuclear detergent wash fractions. At the permissive temperature, the maturation of the mutant ICP8 was similar to that of the wild-type viral protein. With the remainder of the mutants, the nuclear maturation of ICP8 was similar to that encoded by the wild-type virus at the nonpermissive and permissive temperatures as assayed by cell fractionation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号