首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cortico-tectal pathways in auditory signal processing was studied in anesthetized rats by comparing the extracellular single unit activity in the inferior colliculus (IC) before and after functional ablation of the auditory cortex (AC) by tetrodotoxin (TTX). The responses of several IC neurons to sound stimuli were simultaneously recorded with a 16-channel electrode probe introduced into the IC. Click-evoked middle latency responses (MLR) recorded from the AC were suppressed for several hours after TTX injection. During AC inactivation the firing rate of IC neurons increased (40 % of neurons), decreased (44 %) or did not change (16 %) in comparison with control conditions. In several IC neurons, TTX injection resulted in alterations in the shape of the rate-level functions. Response thresholds, tuning properties and the type of discharge pattern of IC neurons were not altered during AC inactivation. However, in one-third of the neurons, the initial part of the response was less altered than the later, sustained part. In two-thirds of neuronal pairs, functional decortication resulted in a change in the cross-correlation coefficient. The results reveal the complex changes that appear in IC neuronal activity after functional ablation of the ipsilateral auditory cortex.  相似文献   

2.
We compare the click-evoked compound action potentials from the exposed intracranial portion of the eight nerve using bipolar and monopolar recording electrodes in patients undergoing vestibular nerve section. It is assumed that a bipolar recording electrode will only record propagated neural activity in the auditory nerve, whereas a monopolar recording electrode may in addition record electrical activity that is conducted passively to the recording site. The results of the present study confirm that the earliest detectable propagated neural activity in the intracranial portion of the auditory nerve occurs with a latency that is close to that of peak II of the brain-stem auditory evoked potentials, and the results also confirm that the late components in the click-evoked compound action potentials that have been demonstrated previously using the monopolar recording technique represent propagated neural activity in the auditory nerve. The results also indicate that the responses that are recorded by a bipolar recording electrode, when the small tips of which are placed on the eight nerve when it is relatively dry, represent only small populations of nerve fibers. Even when an attempt is made to align the two tips of a bipolar electrode with the course of the auditory nerve, this type of electrode may record from different populations of nerve fibers.  相似文献   

3.
Han L  Zhang Y  Lou Y  Xiong Y 《PloS one》2012,7(4):e34837
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.  相似文献   

4.
Abstract: We attempt to provide evidence that the projection from the guinea pig auditory cortex (AC) to the inferior colliculus (IC) may contain glutamatergic or GABAergic fibers. Seven days after unilateral AC aspiration, histological studies indicated almost complete AC destruction and preterminal degeneration of fibers and terminal fields in the dorsal cortex (DCIC), external cortex (ECIC), and central nucleus (CNIC) of the IC ipsilateral to the ablated AC. Contralaterally, degeneration appeared in the DCIC. AC ablation depressed the electrically evoked Ca2+-dependent release of d -[3H]aspartate ( d -[3H]Asp) in the ipsilateral DCIC, ECIC, and CNIC, and d -[3H]Asp uptake in the CNIC. Together with other evidence that the corticocollicular pathway is excitatory, these findings suggest that this projection may contain glufamatergic and/or aspartatergic (Glu/Asp-ergic) fibers. Glutamic acid decarboxylase immunoreactivity was not apparent in presumed pyramidal cells of layer V of the AC retrogradely labeled with biotinylated dextran injected into the ipsilateral IC. Thus, corticocollicular neurons probably do not synthesize GABA and may not be GABAergic. However, AC ablation depressed [14C]GABA release from the ipsilateral DCIC and ECIC, and [14C]GABA uptake in the DCIC. These findings are consistent with the atrophy or down-regulation of some subcortical neurons that mediate GABAergic transmission in the IC.  相似文献   

5.
The neural network structure of a guinea-pig's primary auditory cortex is estimated by applying pattern-time-series analysis to the auditory evoked responses. Spatiotemporal patterns in click-evoked responses, observed by optical recording with voltage-sensitive dye, are analyzed by time series analysis using a multivariable autoregressive (MAR) model. Oscillatory neural activities with a distribution of about 10 40 Hz in the click-induced evoked responses are found in the cortical response field. The cortical regions where the distributed neural oscillations are generated are identified by pattern-time-series analysis. In addition, two types of cortico-cortical connections, unilateral and bilateral connections between the cortical points, are speculated to be the causes of oscillatory neural activity transfer. It can be said that the so-called synchronized neural oscillation, in the sense of coherency or correlation between the two evoked responses at the oscillatory frequency, does not necessarily represent real corticocortical neural connections at the evoked response points.  相似文献   

6.
In chronic experiments on cats unit responses of the primary auditory cortex (area 50) were studied by microelectrode recording during defensive conditioning to sound. During formation of the reflex biphasic responses with relatively short-latency (50–100 msec) and longer-latency (400–500 and 800–900 msec) activation predominated. Neighboring neurons, whose activity was recorded by the same microelectrode, also were involved more intensively in activity. Application of a differential stimulus in 70% of cases produced definite changes in unit activity, among which responses of activation type predominated. Analysis of the course of spike responses of the same neuron during the period of action of a large number of combinations and its comparison with the formation of the conditioned-reflex motor response revealed no direct correlation between these events.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 99–108, March–April, 1979.  相似文献   

7.
During speaking, auditory feedback is used to adjust vocalizations. The brain systems mediating this integrative ability have been investigated using a wide range of experimental strategies. In this report we examined how vocalization alters speech-sound processing within auditory cortex by directly recording evoked responses to vocalizations and playback stimuli using intracranial electrodes implanted in neurosurgery patients. Several new findings resulted from these high-resolution invasive recordings in human subjects. Suppressive effects of vocalization were found to occur only within circumscribed areas of auditory cortex. In addition, at a smaller number of sites, the opposite pattern was seen; cortical responses were enhanced during vocalization. This increase in activity was reflected in high gamma power changes, but was not evident in the averaged evoked potential waveforms. These new findings support forward models for vocal control in which efference copies of premotor cortex activity modulate sub-regions of auditory cortex.  相似文献   

8.
We investigated the functional organization of the human auditory cortex using a novel electrophysiological recording technique combined with an advanced brain magnetic resonance imaging (MRI) technique. Tonotopic mapping data were obtained during single unit recording along the Heschl’s gyrus. Most of the units studied (73%) demonstrated sharply tuned excitatory responses. A tonotopic pattern was observed with the best frequencies systematically increasing as more medial-caudal recording sites were sampled. Additionally, a new auditory field along the posterior aspect of the superior temporal gyrus has been identified using a high spatial resolution direct recording technique. Results obtained during electrical stimulation demonstrate functional connectivity between the primary auditory cortex and the auditory field in the posterior superior temporal gyrus.  相似文献   

9.

Background

The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system.

Methodology/Principal Findings

Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses.

Conclusions/Significance

These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea.  相似文献   

10.
The mismatch negativity (MMN) is a key biomarker of automatic deviance detection thought to emerge from 2 cortical sources. First, the auditory cortex (AC) encodes spectral regularities and reports frequency-specific deviances. Then, more abstract representations in the prefrontal cortex (PFC) allow to detect contextual changes of potential behavioral relevance. However, the precise location and time asynchronies between neuronal correlates underlying this frontotemporal network remain unclear and elusive. Our study presented auditory oddball paradigms along with “no-repetition” controls to record mismatch responses in neuronal spiking activity and local field potentials at the rat medial PFC. Whereas mismatch responses in the auditory system are mainly induced by stimulus-dependent effects, we found that auditory responsiveness in the PFC was driven by unpredictability, yielding context-dependent, comparatively delayed, more robust and longer-lasting mismatch responses mostly comprised of prediction error signaling activity. This characteristically different composition discarded that mismatch responses in the PFC could be simply inherited or amplified downstream from the auditory system. Conversely, it is more plausible for the PFC to exert top-down influences on the AC, since the PFC exhibited flexible and potent predictive processing, capable of suppressing redundant input more efficiently than the AC. Remarkably, the time course of the mismatch responses we observed in the spiking activity and local field potentials of the AC and the PFC combined coincided with the time course of the large-scale MMN-like signals reported in the rat brain, thereby linking the microscopic, mesoscopic, and macroscopic levels of automatic deviance detection.

Neuronal recordings in the medial prefrontal cortex of the rat demonstrate that auditory mismatch responses are purely composed of prediction error signaling activity, independent from the spectral effects that drive the auditory system.  相似文献   

11.
Neurons in the central nucleus of the inferior colliculus (IC) receive excitatory and inhibitory inputs from both lower and higher auditory nuclei. Interaction of these two opposing inputs shapes response properties of IC neurons. In this study, we examine the interaction of excitation and inhibition on the responses of two simultaneously recorded IC neurons using a probe and a masker under forward masking paradigm. We specifically study whether a sound that serves as a probe to elicit responses of one neuron might serve as a masker to suppress or facilitate the responses of the other neuron. For each pair of IC neurons, we deliver the probe at the best frequency (BF) of one neuron and the masker at the BF of the other neuron and vice versa. Among 33 pairs of IC neurons recorded, this forward masking produces response suppression in 29 pairs of IC neurons and response facilitation in 4 pairs of IC neurons. The degree of suppression decreases with recording depth, sound level and BF difference between each pair of IC neurons. During bicuculline application, the degree of response suppression decreases in the bicuculline-applied neuron but increases in the paired neuron. Our data indicate that the forward masking of responses of IC neurons observed in this study is mostly mediated through GABAergic inhibition which also shapes the discharge pattern of these neurons. These data suggest that interaction among individual IC neurons improves auditory sensitivity during auditory signal processing.  相似文献   

12.
电刺激大马蹄蝠听皮层对下丘神经元听觉敏感性的影响   总被引:3,自引:2,他引:3  
实验在12只大马蹄蝠上进行。用常规电生理学方法研究了电刺激听皮层对下丘212个神经元的听反应的影响,结果表明,有32个神经元的听反应被抑制,19个神经元的听反应褐易化。  相似文献   

13.
在30只氨基甲酸乙酯麻醉的SD大鼠上记录神经元单位放电,观察短纯音诱发的皮层AI区神经元ON-OFF反应的特性及电刺激杏仁外侧核(lateral amygdaloid nucleus,LA)对ON-OFF反应以及调谐曲线的影响。实验证实,AI区神经元ON-OFF反应的模式与纯音刺激的强度、频率及作用时程有关;刺激LA可以抑制ON-OFF反应的放电频数,使反应的阈值升高,或使反应放电构型发生变化;此外,刺激LA能使ON-OFF神经元的调谐曲线变窄,Q10数值增大。研究结果不仅表明ON-OFF神经元能对纯音刺激的时程、强度和频率等多种信息进行编码,而且还证明杏仁外侧核可以在皮层水平参与听觉信息的调制,削弱或衰减某些听觉信息,导致整个调谐曲线上移变窄,从而提高AI区ON-OFF神经元的频率选择性能,有利于检测外界嘈杂环境中特定的听觉信息。  相似文献   

14.
The processing of species-specific communication signals in the auditory system represents an important aspect of animal behavior and is crucial for its social interactions, reproduction, and survival. In this article the neuronal mechanisms underlying the processing of communication signals in the higher centers of the auditory system--inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC)--are reviewed, with particular attention to the guinea pig. The selectivity of neuronal responses for individual calls in these auditory centers in the guinea pig is usually low--most neurons respond to calls as well as to artificial sounds; the coding of complex sounds in the central auditory nuclei is apparently based on the representation of temporal and spectral features of acoustical stimuli in neural networks. Neuronal response patterns in the IC reliably match the sound envelope for calls characterized by one or more short impulses, but do not exactly fit the envelope for long calls. Also, the main spectral peaks are represented by neuronal firing rates in the IC. In comparison to the IC, response patterns in the MGB and AC demonstrate a less precise representation of the sound envelope, especially in the case of longer calls. The spectral representation is worse in the case of low-frequency calls, but not in the case of broad-band calls. The emotional content of the call may influence neuronal responses in the auditory pathway, which can be demonstrated by stimulation with time-reversed calls or by measurements performed under different levels of anesthesia. The investigation of the principles of the neural coding of species-specific vocalizations offers some keys for understanding the neural mechanisms underlying human speech perception.  相似文献   

15.
It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.  相似文献   

16.
Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.Key words: salicylate, inferior colliculus, auditory cortex, activity-dependent cytoskeletal protein, early growth response gene-1  相似文献   

17.
Spontaneous activity of cortical neurons exhibits alternative fluctuations of membrane potential consisting of phased depolarization called "up-state" and persistent hyperpolarization called "down-state" during slow wave sleep and anesthesia. Here, we examined the effects of sound stimuli (noise bursts) on neuronal activity by intracellular recording in vivo from the rat auditory cortex (AC). Noise bursts increased the average time in the up-state by 0.81+/-0.65 s (range, 0.27-1.74 s) related to a 10 s recording duration. The rise times of the spontaneous up-events averaged 69.41+/-18.04 ms (range, 40.10-119.21 ms), while those of the sound-evoked up-events were significantly shorter (p<0.001) averaging only 22.54+/-8.81 ms (range, 9.31-45.74 ms). Sound stimulation did not influence ongoing spontaneous up-events. Our data suggest that a sound stimulus does not interfere with ongoing spontaneous neuronal activity in auditory cortex but can evoke new depolarizations in addition to the spontaneous ones.  相似文献   

18.
The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice1, we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation.  相似文献   

19.
目的:探讨声音强度对大鼠听皮层神经元特征频率可塑性的影响。方法:采用常规电生理学细胞外记录技术,测定不同声刺激强度下,听皮层神经元的特征频率和调谐曲线,比较条件刺激前后的变化。结果:在条件刺激声频率和神经元的特征频率相差±1.0kHz范围内,条件刺激诱导的神经元特征频率可塑性与条件刺激强度有关,较高的刺激强度比较低刺激强度诱导的特征频率可塑性概率高;特征频率可塑性的概率与神经元的频率调谐曲线类型相关,但这种相关几乎不受条件刺激声强度影响。结论:条件声刺激强度可明显影响大鼠听皮层神经元特征频率的可塑性。  相似文献   

20.
In five anaesthetized cats (Nembutal 35 mg/kg) with 14 chronically implanted recording epidural electrodes the auditory brain stem responses (ABR) to monoaural stimulation (click) in symmetrical areas of the brain cortex were recorded. Each ABR to acoustic stimulus of sufficient intensity is formed by a complex of alternating five positive (P1-P5) and four negative (N1-N4) peaks; two further small peaks often follow on this complex. The amplitude of ABR peaks N3, P4, N4 and P5 to monoaural stimulation in symmetrical areas of cat's cortex was always higher in records from the hemisphere contralateral to the stimulated ear than in records from the ipsilateral one. The amplitude of P3 ABR peak behaved to the contrary--it was higher on ipsilateral hemisphere. On the other hand the amplitude of ABR peaks P1, N1, P2 and N2 to monoaural stimulation in symmetrical areas of the brain cortex showed no degree of lateralization in our experimental animals. The present findings support indirectly the presumption that each peak of the ABR is generated by a particular acoustic brain stem structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号