首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Muscle hypertrophy during resistance training is reportedly increased by creatine supplementation. Having previously failed to find an anabolic effect on muscle protein turnover at rest, either fed or fasted, we have now examined the possibility of a stimulatory effect of creatine in conjunction with acute resistance exercise. Seven healthy men (body mass index, 23 +/- 2 kg/m2, 21 +/- 1 yr, means +/- SE) performed 20 x 10 repetitions of leg extension-flexion at 75% one-repetition maximum in one leg, on two occasions, 4 wk apart, before and after ingesting 21 g/day creatine for 5 days. The subjects ate approximately 21 g maltodextrin + 6 g protein/h for 3 h postexercise. We measured incorporation of [1-13C]leucine into quadriceps muscle proteins in the rested and exercised legs. Leg protein breakdown (as dilution of [2H5]phenylalanine) was also assessed in the exercised and rested leg postexercise. Creatine supplementation increased muscle total creatine by approximately 21% (P < 0.01). Exercise increased the synthetic rates of myofibrillar and sarcoplasmic proteins by two- to threefold (P < 0.05), and leg phenylalanine balance became more positive, but creatine was without any anabolic effect.  相似文献   

2.
Creatine monohydrate (CrM) supplementation during resistance exercise training results in a greater increase in strength and fat-free mass than placebo. Whether this is solely due to an increase in intracellular water or whether there may be alterations in protein turnover is not clear at this point. We examined the effects of CrM supplementation on indexes of protein metabolism in young healthy men (n = 13) and women (n = 14). Subjects were randomly allocated to CrM (20 g/day for 5 days followed by 5 g/day for 3-4 days) or placebo (glucose polymers) and tested before and after the supplementation period under rigorous dietary and exercise controls. Muscle phosphocreatine, creatine, and total creatine were measured before and after supplementation. A primed-continuous intravenous infusion of L-[1-(13)C]leucine and mass spectrometry were used to measure mixed-muscle protein fractional synthetic rate and indexes of whole body leucine metabolism (nonoxidative leucine disposal), leucine oxidation, and plasma leucine rate of appearance. CrM supplementation increased muscle total creatine (+13.1%, P < 0.05) with a trend toward an increase in phosphocreatine (+8.8%, P = 0.09). CrM supplementation did not increase muscle fractional synthetic rate but reduced leucine oxidation (-19.6%) and plasma leucine rate of appearance (-7.5%, P < 0.05) in men, but not in women. CrM did not increase total body mass or fat-free mass. We conclude that short-term CrM supplementation may have anticatabolic actions in some proteins (in men), but CrM does not increase whole body or mixed-muscle protein synthesis.  相似文献   

3.
The goal of this study was to discover whether using different tracers affects the measured rate of muscle protein synthesis in human muscle. We therefore measured the mixed muscle protein fractional synthesis rate (FSR) in the quadriceps of older adults during basal, postabsorptive conditions and mixed meal feeding (70 mg protein x kg fat-free mass(-1) x h(-1) x 2.5 h) by simultaneous intravenous infusions of [5,5,5-(2)H(3)]leucine and either [ring-(13)C(6)]phenylalanine or [ring-(2)H(5)]phenylalanine and analysis of muscle tissue samples by gas chromatography-mass spectrometry. Both the basal FSR and the FSR during feeding were approximately 20% greater (P < 0.001) when calculated from the leucine labeling in muscle tissue fluid and proteins (fasted: 0.063 +/- 0.005%/h; fed: 0.080 +/- 0.007%/h) than when calculated from the phenylalanine enrichment data (0.051 +/- 0.004 and 0.066 +/- 0.005%/h, respectively). The feeding-induced increase in the FSR ( approximately 20%; P = 0.011) was not different with leucine and phenylalanine tracers (P = 0.69). Furthermore, the difference between the leucine- and phenylalanine-derived FSRs was independent of the phenylalanine isotopomer used (P = 0.92). We conclude that when using stable isotope-labeled tracers and the classic precursor product model to measure the rate of muscle protein synthesis, absolute rates of muscle protein FSR differ significantly depending on the tracer amino acid used; however, the anabolic response to feeding is independent of the tracer used. Thus different precursor amino acid tracers cannot be used interchangeably for the evaluation of muscle protein synthesis, and data from studies using different tracer amino acids can be compared qualitatively but not quantitatively.  相似文献   

4.
The effects of prolonged caloric restriction (CR) on protein kinetics in lean subjects has not been investigated previously. The purpose of this study was to test the hypotheses that 21 days of CR in lean subjects would 1) result in significant losses of lean mass despite a suppression in leucine turnover and oxidation and 2) negatively impact exercise performance. Nine young, normal-weight men [23 +/- 5 y, 78.6 +/- 5.7 kg, peak oxygen consumption (Vo2 peak) 45.2 +/- 7.3 ml.kg(-1).min(-1), mean +/- SD] were underfed by 40% of the calories required to maintain body weight for 21 days and lost 3.8 +/- 0.3 kg body wt and 2.0 +/- 0.4 kg lean mass. Protein intake was kept at 1.2 g.kg(-1).day(-1). Leucine kinetics were measured using alpha-ketoisocaproic acid reciprocal pool model in the postabsorptive state during rest and 50 min of exercise (EX) at 50% of Vo2 peak). Body composition, basal metabolic rate (BMR), and exercise performance were measured throughout the intervention. At rest, leucine flux (approximately 131 micromol.kg(-1).h(-1)) and oxidation (R(ox); approximately 19 micromol.kg(-1).h(-1)) did not differ pre- and post-CR. During EX, leucine flux (129 +/- 6 vs. 121 +/- 6) and R(ox) (54 +/- 6 vs. 46 +/- 8) were lower after CR than they were pre-CR. Nitrogen balance was negative throughout the intervention ( approximately 3.0 g N/day), and BMR declined from 1,898 +/- 262 to 1,670 +/- 203 kcal/day. Aerobic performance (Vo2 peak, endurance cycling) was not impacted by CR, but arm flexion endurance decreased by 20%. In conclusion, 3 wk of caloric restriction reduced leucine flux and R(ox) during exercise in normal-weight young men. However, despite negative nitrogen balance and loss of lean mass, whole body exercise performance was well maintained in response to CR.  相似文献   

5.
The present study was carried out to assess the effects of protease inhibitor (PI) therapy on basal whole body protein metabolism and its response to acute amino acid-glucose infusion in 14 human immunodeficiency virus (HIV)-infected patients. Patients treated with PIs (PI+, 7 patients) or without PIs (PI-, 7 patients) were studied after an overnight fast during a 180-min basal period followed by a 140-min period of amino acid-glucose infusion. Protein metabolism was investigated by a primed constant infusion of l-[1-(13)C]leucine. Dual-energy X-ray absorptiometry for determination of fat-free mass (FFM) and body fat mass measured body composition. In the postabsorptive state, whole body leucine balance was 2.5 times (P < 0.05) less negative in the PI+ than in the PI- group. In HIV-infected patients treated with PIs, the oxidative leucine disposal during an acute amino acid-glucose infusion was lower (0.58 +/- 0.09 vs. 0.81 +/- 0.07 micromol x kg FFM(-1) x min(-1) using plasma [(13)C]leucine enrichment, P = 0.06; or 0.70 +/- 0.10 vs. 0.99 +/- 0.08 micromol x kg FFM(-1) x min(-1) using plasma [(13)C]ketoisocaproic acid enrichment, P = 0.04 in PI+ and PI- groups, respectively) than in patients treated without PIs. Consequently, whole body nonoxidative leucine disposal (an index of protein synthesis) and leucine balance (0.50 +/- 0.10 vs. 0.18 +/- 0.06 micromol x kg FFM x (-1) x min(-1) in PI+ and PI- groups respectively, P < 0.05) were significantly improved during amino acid-glucose infusion in patients treated with PIs. However, whereas the response of whole body protein anabolism to an amino acid-glucose infusion was increased in HIV-infected patients treated with PIs, any improvement in lean body mass was detected.  相似文献   

6.
The influence of creatine supplementation on substrate utilization during rest was investigated using a double-blind crossover design. Ten active men participated in 12 wk of weight training and were given creatine and placebo (20 g/day for 4 days, then 2 g/day for 17 days) in two trials separated by a 4-wk washout. Body composition, substrate utilization, and strength were assessed after weeks 2, 5, 9, and 12. Maximal isometric contraction [1 repetition maximum (RM)] leg press increased significantly (P < 0.05) after both treatments, but 1-RM bench press was increased (33 +/- 8 kg, P < 0.05) only after creatine. Total body mass increased (1.6 +/- 0.5 kg, P < 0.05) after creatine but not after placebo. Significant (P < 0.05) increases in fat-free mass were found after creatine and placebo supplementation (1.9 +/- 0.8 and 2.2 +/- 0.7 kg, respectively). Fat mass did not change significantly with creatine but decreased after the placebo trial (-2.4 +/- 0.8 kg, P < 0.05). Carbohydrate oxidation was increased by creatine (8.9 +/- 4.0%, P < 0.05), whereas there was a trend for increased respiratory exchange ratio after creatine supplementation (0.03 +/- 0.01, P = 0.07). Changes in substrate oxidation may influence the inhibition of fat mass loss associated with creatine after weight training.  相似文献   

7.
This study was undertaken to determine whether the protein feeding pattern could induce chronic adaptation of protein turnover. After a 15-day adaptive period, elderly (68 yr) and young (26 yr) women received, for 14 days, a diet providing 200 KJ x kg fat-free mass (FFM)(-1) x day(-1), where the daily protein intake (1.7 g protein x kg FFM(-1) x day(-1)) was either spread over 4 meals in the spread pattern or mainly (80%) consumed at noon in the pulse pattern. One day after the end of the dietary treatment, whole body leucine kinetics were measured by use of a continuous [(13)C]leucine infusion, both in the postabsorptive state and in the same fed state. The pulse pattern was able to induce, in young as in elderly women, a lower postabsorptive leucine oxidation and endogenous leucine flux than the spread pattern and improved the responsiveness of nonoxidative leucine disposal during 4-h oral feeding. Thus the pulse pattern was able to induce chronic regulation of protein metabolism in young as in elderly women.  相似文献   

8.
We hypothesized a differential activation of the anabolic signaling proteins protein kinase B (PKB) and p70 S6 kinase (p70(S6K)) and subsequent differential stimulation of human muscle protein synthesis (MPS) after dynamic shortening or lengthening exercise. Eight healthy men [25 +/- 5 yr, BMI 26 +/- 3 kg/m(-2) (means +/- SD)] were studied before and after 12 min of repeated stepping up to knee height, and down again, while carrying 25% of their body weight, i.e., shortening exercise with the "up" leg and lengthening exercise with contralateral "down" leg. Quadriceps biopsies were taken before and 3, 6, and 24 h after exercise. After exercise, over 2 h before the biopsies, the subjects ingested 500 ml of water containing 45 g of essential amino acids and 135 g of sucrose. Rates of muscle protein synthesis were determined via incorporation over time of [1-(13)C]leucine (相似文献   

9.
Decline in muscle mass, protein synthesis, and mitochondrial function occurs with age, and amino acids are reported to enhance both muscle protein synthesis and mitochondrial function. It is unclear whether increasing dietary protein intake corrects postabsorptive muscle changes in aging. We determined whether a 10-day diet of high [HP; 3.0 g protein x kg fat-free mass (FFM)(-1) x day(-1)] vs. usual protein intake (UP; 1.5 g protein x kg FFM(-1) x day(-1)) favorably affects mitochondrial function, protein metabolism, and nitrogen balance or adversely affects insulin sensitivity and glomerular filtration rate (GFR) in 10 healthy younger (24+/-1 yr) and 9 older (70+/-2 yr) participants in a randomized crossover study. Net daily nitrogen balance increased equally in young and older participants, but postabsorptive catabolic state also increased, as indicated by higher whole body protein turnover and leucine oxidation with no change in protein synthesis. Maximal muscle mitochondrial ATP production rate was lower in older people, with no change occurring in diet. GFR was lower in older people, and response to HP was significantly different between the two groups, with a significant increase occurring only in younger people, thus widening the differences in GFR between the young and older participants. In conclusion, a short-term high-protein diet increased net daily nitrogen balance but increased the postabsorptive use of protein as a fuel. HP did not enhance protein synthesis or muscle mitochondrial function in either young or older participants. Additionally, widening differences in GFR between young and older patients is a potential cause of concern in using HP diet in older people.  相似文献   

10.
We aimed to determine whether there were differences in the extent and time course of skeletal muscle myofibrillar protein synthesis (MPS) and muscle collagen protein synthesis (CPS) in human skeletal muscle in an 8.5-h period after bouts of maximal muscle shortening (SC; average peak torque = 225 +/- 7 N.m, means +/- SE) or lengthening contractions (LC; average peak torque = 299 +/- 18 N.m) with equivalent work performed in each mode. Eight healthy young men (21.9 +/- 0.6 yr, body mass index 24.9 +/- 1.3 kg/m2) performed 6 sets of 10 maximal unilateral LC of the knee extensors on an isokinetic dynamometer. With the contralateral leg, they then performed 6 sets of maximal unilateral SC with work matched to the total work performed during LC (10.9 +/- 0.7 vs. 10.9 +/- 0.8 kJ, P = 0.83). After exercise, the participants consumed small intermittent meals to provide 0.1 g.kg(-1).h(-1) of protein and carbohydrate. Prior exercise elevated MPS above rest in both conditions, but there was a more rapid rise after LC (P < 0.01). The increases (P < 0.001) in CPS above rest were identical for both SC and LC and likely represent a remodeling of the myofibrillar basement membrane. Therefore, a more rapid rise in MPS after maximal LC could translate into greater protein accretion and muscle hypertrophy during chronic resistance training utilizing maximal LC.  相似文献   

11.
Smoking causes multiple organ dysfunction. The effect of smoking on skeletal muscle protein metabolism is unknown. We hypothesized that the rate of skeletal muscle protein synthesis is depressed in smokers compared with non-smokers. We studied eight smokers (> or =20 cigarettes/day for > or =20 years) and eight non-smokers matched for sex (4 men and 4 women per group), age (65 +/- 3 and 63 +/- 3 yr, respectively; means +/- SEM) and body mass index (25.9 +/- 0.9 and 25.1 +/- 1.2 kg/m(2), respectively). Each subject underwent an intravenous infusion of stable isotope-labeled leucine in conjunction with blood and muscle tissue sampling to measure the mixed muscle protein fractional synthesis rate (FSR) and whole body leucine rate of appearance (Ra) in plasma (an index of whole body proteolysis), the expression of genes involved in the regulation of muscle mass (myostatin, a muscle growth inhibitor, and MAFBx and MuRF-1, which encode E3 ubiquitin ligases in the proteasome proteolytic pathway) and that for the inflammatory cytokine TNF-alpha in muscle, and the concentration of inflammatory markers in plasma (C-reactive protein, TNF-alpha, interleukin-6) which are associated with muscle wasting in other conditions. There were no differences between nonsmokers and smokers in plasma leucine concentration, leucine rate of appearance, and plasma concentrations of inflammatory markers, or TNF-alpha mRNA in muscle, but muscle protein FSR was much less (0.037 +/- 0.005 vs. 0.059 +/- 0.005%/h, respectively, P = 0.004), and myostatin and MAFBx (but not MuRF-1) expression were much greater (by approximately 33 and 45%, respectivley, P < 0.05) in the muscle of smokers than of nonsmokers. We conclude that smoking impairs the muscle protein synthesis process and increases the expression of genes associated with impaired muscle maintenance; smoking therefore likely increases the risk of sarcopenia.  相似文献   

12.
We reported (Yarasheski KE, Zachwieja JJ, Gischler J, Crowley J, Horgan MM, and Powderly WG. Am J Physiol Endocrinol Metab 275: E577-E583, 1998) that AIDS muscle wasting was associated with an inappropriately low rate of muscle protein synthesis and an elevated glutamine rate of appearance (Ra Gln). We hypothesized that high plasma HIV RNA caused dysregulation of muscle amino acid metabolism. We determined whether a reduction in HIV RNA (> or =1 log) increased muscle protein synthesis rate and reduced R(a) Gln and muscle proteasome activity in 10 men and 1 woman (22-57 yr, 60-108 kg, 17-33 kg muscle) with advanced HIV (CD4 = 0-311 cells/microl; HIV RNA = 10-375 x 10(3) copies/ml). We utilized stable isotope tracer methodologies ([13C]Leu and [15N]Gln) to measure the fractional rate of mixed muscle protein synthesis and plasma Ra Gln in these subjects before and 4 mo after initiating their first or a salvage antiretroviral therapy regimen. After treatment, median CD4 increased (98 vs. 139 cells/microl, P = 0.009) and median HIV RNA was reduced (155,828 vs. 100 copies/ml, P = 0.003). Mixed muscle protein synthesis rate increased (0.062 +/- 0.005 vs. 0.078 +/- 0.006%/h, P = 0.01), Ra Gln decreased (387 +/- 33 vs. 323 +/- 15 micromol.kg fat-free mass(-1).h(-1), P = 0.04), and muscle proteasome chymotrypsin-like catalytic activity was reduced 14% (P = 0.03). Muscle mass was only modestly increased (1 kg, P = not significant). We estimated that, for each 10,000 copies/ml reduction in HIV RNA, approximately 3 g of additional muscle protein are synthesized per day. These findings suggest that reducing HIV RNA increases muscle protein synthesis and reduces muscle proteolysis, but muscle protein synthesis relative to whole body protein synthesis rate is not restored to normal, so muscle mass is not substantially increased.  相似文献   

13.
The aims of this study were to compare different tracer methods to assess whole body protein turnover during 6 h of prolonged endurance exercise when carbohydrate was ingested throughout the exercise period and to investigate whether addition of protein can improve protein balance. Eight endurance-trained athletes were studied on two different occasions at rest (4 h), during 6 h of exercise at 50% of maximal O2 uptake (in sequential order: 2.5 h of cycling, 1 h of running, and 2.5 h of cycling), and during subsequent recovery (4 h). Subjects ingested carbohydrate (CHO trial; 0.7 g CHO.kg(-1.)h(-1)) or carbohydrate/protein beverages (CHO + PRO trial; 0.7 g CHO.kg(-1).h(-1) and 0.25 g PRO.kg(-1).h(-1)) at 30-min intervals during the entire study. Whole body protein metabolism was determined by infusion of L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea tracers with sampling of blood and expired breath. Leucine oxidation increased from rest to exercise [27 +/- 2.5 vs. 74 +/- 8.8 (CHO) and 85 +/- 9.5 vs. 200 +/- 16.3 mg protein.kg(-1).h(-1) (CHO + PRO), P < 0.05], whereas phenylalanine oxidation and urea production did not increase with exercise. Whole body protein balance during exercise with carbohydrate ingestion was negative (-74 +/- 8.8, -17 +/- 1.1, and -72 +/- 5.7 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. Addition of protein to the carbohydrate drinks resulted in a positive or less-negative protein balance (-32 +/- 16.3, 165 +/- 4.6, and 151 +/- 13.4 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. We conclude that, even during 6 h of exhaustive exercise in trained athletes using carbohydrate supplements, net protein oxidation does not increase compared with the resting state and/or postexercise recovery. Combined ingestion of protein and carbohydrate improves net protein balance at rest as well as during exercise and postexercise recovery.  相似文献   

14.
Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1.  相似文献   

15.
The purpose of this case study was to examine the effects of repeated creatine administration on muscle phosphocreatine, plasma creatine, and urine creatine. One male subject (age, 32 years; body mass, 78.4 kg; height, 160 cm; resistance training experience, 15 years) ingested creatine (20 g.d(-1) for 5 days) during 2 bouts separated by a 30-day washout period. Muscle phosphocreatine was measured before and after supplementation. On day 1 of supplementation, blood samples were taken immediately before and hourly for 5 hours following ingestion of 5 g of creatine, and a pharmacokinetic analysis of plasma creatine was conducted. Twenty-four-hour urine collections were conducted before and for 5 days during supplementation. Muscle phosphocreatine increased 45% following the first supplementation bout, decreased 22% during the 30-day washout period, and increased 25% following the second bout. There were no meaningful differences in plasma creatine pharmacokinetic parameters between bouts 1 and 2. Total urine creatine losses during supplementation were 63.2 and 63.4 g during bouts 1 and 2, respectively. The major findings were that (a) a 30-day washout period is insufficient time for muscle phosphocreatine to return to baseline following creatine supplementation but is sufficient time for plasma and urine creatine levels to return to presupplementation values; (b) postsupplementation muscle phosphocreatine levels were similar following bouts 1 and 2 despite 23% higher presupplementation muscle phosphocreatine before bout 2; and (c) the increased muscle phosphocreatine that persisted throughout the 30-day washout period corresponded with maintenance of increased body mass (+2.0 kg). Athletes should be aware that the washout period for muscle creatine to return to baseline levels may be longer than 30 days in some individuals, and this may be accompanied by a persistent increase in body mass.  相似文献   

16.
Resistance training changes the balance of muscle protein turnover, leading to gains in muscle mass. A longitudinal design was employed to assess the effect that resistance training had on muscle protein turnover in the fed state. A secondary goal was investigation of the potential interactive effects of creatine (Cr) monohydrate supplementation on resistance-training-induced adaptations. Young (N = 19, 23.7 +/- 3.2 year), untrained (UT), healthy male subjects completed an 8-week resistance-training program (6 d/week). Supplementation with Cr had no impact on any of the variables studied; hence, all subsequent data were pooled. In the UT and trained (T) state, subjects performed an acute bout of resistance exercise with a single leg (exercised, EX), while their contralateral leg acted as a nonexercised (NE) control. Following exercise, subjects were fed while receiving a primed constant infusion of [d5]- and [15N]-phenylalanine to determine the fractional synthetic and breakdown rates (FSR and FBR), respectively, of skeletal muscle proteins. Acute exercise increased FSR (UT-NE, 0.065 +/- 0.025 %/h; UT-EX, 0.088 +/- 0.032 %/h; P < 0.01) and FBR (UT-NE, 0.047 +/- 0.023 %/h; UT-EX, 0.058 +/- 0.026 %/h; P < 0.05). Net balance (BAL = FSR - FBR) was positive in both legs (P < 0.05) but was significantly greater (+65%) in the EX versus the NE leg (P < 0.05). Muscle protein FSR and FBR were greater at rest following T (FSR for T-NE vs. UT-NE, +46%, P < 0.01; FBR for T-NE vs. UT-NE, +81%, P < 0.05). Resistance training attenuated the acute exercise-induced rise in FSR (T-NE vs. T-EX, +20%, P = 0.65). The present results demonstrate that resistance training resulted in an elevated resting muscle protein turnover but an attenuation of the acute response of muscle protein turnover to a single bout of resistance exercise.  相似文献   

17.
Decreased dietary protein intake and hemodialysis (HD)-associated protein catabolism are among several factors that predispose chronic hemodialysis (CHD) patients to uremic malnutrition and associated muscle wasting. Intradialytic parenteral nutrition (IDPN) acutely reverses the net negative whole body and forearm muscle protein balances observed during the HD procedure. Exercise has been shown to improve muscle protein homeostasis, especially if performed with adequately available intramuscular amino acids. We hypothesized that exercise performance would provide additive anabolic effects to the beneficial effects of IDPN. We studied six CHD patients at two separate HD sessions: 1) IDPN administration only and 2) IDPN + exercise. Patients were studied 2 h before, during, and 2 h after an HD session by use of a primed constant infusion of l-[1-(13)C]leucine and l-[ring-(2)H(5)] phenylalanine. Exercise combined with IDPN promoted additive twofold increases in forearm muscle essential amino acid uptake (455 +/- 105 vs. 229 +/- 38 nmol.100 ml(-1).min(-1), P < 0.05) and net muscle protein accretion (125 +/- 37 vs. 56 +/- 30 microg.100 ml(-1).min(-1), P < 0.05) during HD compared with IDPN alone. Measurements of whole body protein homeostasis and energy expenditure were not altered by exercise treatment. In conclusion, exercise in the presence of adequate nutritional supplementation has potential as a therapeutic intervention to blunt the loss of muscle mass in CHD patients.  相似文献   

18.
19.
This study investigated the effect of creatine supplementation in conjunction with protein and/or carbohydrate (CHO) ingestion on plasma creatine and serum insulin concentrations and whole body creatine retention. Twelve men consumed 4 x 5 g of creatine on four occasions in combination with 1) 5 g of CHO, 2) 50 g of protein and 47 g of CHO, 3) 96 g of CHO, or 4) 50 g of CHO. The increase in serum insulin was no different when the protein-CHO and high-CHO treatments were compared, but both were greater than the response recorded for the low-CHO treatment (both P < 0.05). As a consequence, body creatine retention was augmented by approximately 25% for protein-CHO and high-CHO treatments compared with placebo treatment. The areas under creatine- and insulin-time curves were related during the first oral challenge (r = -0.920, P < 0.05) but not after the fourth (r = -0.342). It is concluded, first, that the ingestion of creatine in conjunction with approximately 50 g of protein and CHO is as effective at potentiating insulin release and creatine retention as ingesting creatine in combination with almost 100 g of CHO. Second, the stimulatory effect of insulin on creatine disposal was diminished within the initial 24 h of supplementation.  相似文献   

20.
This study investigated creatine supplementation (CrS) effects on muscle total creatine (TCr), creatine phosphate (CrP), and intermittent sprinting performance by using a design incorporating the time course of the initial increase and subsequent washout period of muscle TCr. Two groups of seven volunteers ingested either creatine [Cr; 6 x (5 g Cr-H(2)O + 5 g dextrose)/day)] or a placebo (6 x 5 g dextrose/day) over 5 days. Five 10-s maximal cycle ergometer sprints with rest intervals of 180, 50, 20, and 20 s and a resting vastus lateralis biopsy were conducted before and 0, 2, and 4 wk after placebo or CrS. Resting muscle TCr, CrP, and Cr were unchanged after the placebo but were increased (P < 0.05) at 0 [by 22.9 +/- 4.2, 8.9 +/- 1.9, and 14.0 +/- 3.3 (SE) mmol/kg dry mass, respectively] and 2 but not 4 wk after CrS. An apparent placebo main effect of increased peak power and cumulative work was found after placebo and CrS, but no treatment (CrS) main effect was found on either variable. Thus, despite the rise and washout of muscle TCr and CrP, maximal intermittent sprinting performance was unchanged by CrS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号