首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheon YH  Park HS  Kim JH  Kim Y  Kim HS 《Biochemistry》2004,43(23):7413-7420
We previously proposed that the stereochemistry gate loops (SGLs) constituting the substrate binding pocket of D-hydantoinase, a (beta/alpha)(8)-barrel enzyme, might be major structural determinants of the substrate specificity [Cheon, Y. H., et al. (2002) Biochemistry 41, 9410-9417]. To construct a mutant D-hydantoinase with favorable substrate specificity for the synthesis of commercially important non-natural amino acids, the SGL loops of the enzyme were rationally manipulated on the basis of the structural analysis and sequence alignment of three hydantoinases with distinct substrate specificities. In the SGLs of D-hydantoinase from Bacillus stearothermophilus SD1, mutations of hydrophobic and bulky residues Met 63, Leu 65, Phe 152, and Phe 159, which interact with the exocyclic substituent of the substrate, induced remarkable changes in the substrate specificities. In particular, the substrate specificity of mutant F159A toward aromatic substrate hydroxyphenylhydantoin (HPH) was enhanced by approximately 200-fold compared with that of the wild-type enzyme. Saturation mutagenesis at position 159 revealed that k(cat) for aromatic substrates increased gradually as the size of the amino acid side chain decreased, and this seems to be due to reduced steric hindrance between the bulky exocyclic group of the substrate and the amino acid side chains. When site-directed random mutagenesis of residues 63 and 65 was conducted with the wild type and mutant F159A, the selected enzymes (M63F/L65V and L65F/F159A) exhibited approximately 10-fold higher k(cat) values for HPH than the wild-type counterpart, which is likely to result from reorganization of the active site for efficient turnover. These results indicate that the amino acid residues of SGLs forming the substrate binding pocket are critical for the substrate specificity of D-hydantoinase, and the results also imply that substrate specificities of cyclic amidohydrolase family enzymes can be modulated by rational design of these SGLs.  相似文献   

2.
The hydrophobic S1' subsite is one of the major determinants of the substrate specificity of thermolysin and related M4 family proteases. In the thermolysin-like protease (TLP) produced by Bacillus stearothermophilus (TLP-ste), the hydrophobic S1' subsite is mainly formed by Phe130, Phe133, Val139 and Leu202. In the present study, we have examined the effects of replacing Leu202 by smaller (Gly, Ala, Val) and larger (Phe, Tyr) hydrophobic residues. The mutational effects showed that the wild-type S1' pocket is optimal for binding leucine side chains. Reduction of the size of residue 202 resulted in a higher efficiency towards substrates with Phe in the P1' position. Rather unexpectedly, the Leu202-->Phe and Leu202-->Tyr mutations, which were expected to decrease the size of the S1' subsite, resulted in a large increase in activity towards dipeptide substrates with Phe in the P1' position. This is probably due to the fact that 202Phe and 202Tyr adopt a second possible rotamer that opens up the subsite compared to Leu202, and also favours interactions with the substrate. To validate these results, we constructed variants of thermolysin with changes in the S1' subsite. Thermolysin and TLP-ste variants with identical S1' subsites were highly similar in terms of their preference for Phe vs. Leu in the P1' position.  相似文献   

3.
Amphioxus (Branchiostoma floridae) cholinesterase 2 (ChE2) hydrolyzes acetylthiocholine (AsCh) almost exclusively. We constructed a homology model of ChE2 on the basis of Torpedo californica acetylcholinesterase (AChE) and found that the acyl pocket of the enzyme resembles that of Drosophila melanogaster AChE, which is proposed to be comprised of Phe330 (Phe290 in T. californica AChE) and Phe440 (Val400), rather than Leu328 (Phe288) and Phe330 (Phe290), as in vertebrate AChE. In ChE2, the homologous amino acids are Phe312 (Phe290) and Phe422 (Val400). To determine if these amino acids define the acyl pocket of ChE2 and its substrate specificity, and to obtain information about the hydrophobic subsite, partially comprised of Tyr352 (Phe330) and Phe353 (Phe331), we performed site-directed mutagenesis and in vitro expression. The aliphatic substitution mutant F312I ChE2 hydrolyzes AsCh preferentially but also butyrylthiocholine (BsCh), and the change in substrate specificity is due primarily to an increase in kcat for BsCh; Km and Kss are also altered. F422L and F422V produce enzymes that hydrolyze BsCh and AsCh equally due to an increase in kcat for BsCh and a decrease in kcat for AsCh. Our data suggest that Phe312 and Phe422 define the acyl pocket. We also screened mutants for changes in sensitivity to various inhibitors. Y352A increases the sensitivity of ChE2 to the bulky inhibitor ethopropazine. Y352A decreases inhibition by BW284c51, consistent with its role as part of the choline-binding site. Aliphatic replacement mutations produce enzymes that are more sensitive to inhibition by iso-OMPA, presumably by increasing access to the active site serine. Y352A, F353A and F353V make ChE2 considerably more resistant to inhibition by eserine and neostigmine, suggesting that binding of these aromatic inhibitors is mediated by π–π or cation–π interactions at the hydrophobic site. Our results also provide information about the aromatic trapping of the active site histidine and the inactivation of ChE2 by sulfhydryl reagents.  相似文献   

4.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

5.
KatB is the only catalase–peroxidase identified so far in Sinorhizobium meliloti. It plays a housekeeping role, as it is expressed throughout all the growth phases of the free-living bacterium and also during symbiosis. This paper describes the functional and structural characterization of the KatB mutants Gly303Ser, Trp95Ala, Trp95Phe, Tyr217Leu, Tyr217Phe and Met243Val carried out by optical and electron spin resonance spectroscopy. The aim of this work was to investigate the involvement of these residues in the catalatic and/or peroxidatic reaction and falls in the frame of the open dispute around the factors that influence the balance between catalatic and peroxidatic activity in heme enzymes. The Gly303 residue is not conserved in any other protein of this family, whereas the Trp95, Tyr217 and Met243 residues are thought to form an intrinsic cofactor that is likely to play a role in intramolecular electron transfer. Spectroscopic investigations show that the Gly303Ser mutant is almost similar to the wild-type KatB and should not be involved in substrate binding. Mutations on Trp95, Tyr217 and Met243 clear out the catalatic activity completely, whereas the peroxidatic activity is maintained or even increased with respect to that of the wild-type enzyme. The k cat values obtained for these mutants suggest that Trp95 and Tyr217 form a huge delocalized system that provides a pathway for electron transfer to the heme. Conversely, Met243 is likely to be placed close to the binding site of the organic molecules and plays a crucial role in substrate docking.  相似文献   

6.
ω-Transaminase (ω-TA) is an industrially important enzyme for production of chiral amines. About 20 (S)-specific ω-TAs known to date show remarkably similar substrate selectivity characterized by stringent steric constraint precluding entry of a substituent larger than an ethyl group in the small binding pocket (S) and dual recognition of an aromatic substituent as well as a carboxylate group in the large pocket (L). The strictly defined substrate selectivity of the available ω-TAs remains a limiting factor in the production of structurally diverse chiral amines. In this work, we cloned, purified, and characterized three new ω-TAs from Ochrobactrum anthropi, Acinetobacter baumannii, and Acetobacter pasteurianus that were identified by a BLASTP search using the previously studied ω-TA from Paracoccus denitrificans. All the new ω-TAs exhibited similar substrate specificity, which led us to explore whether the molecular determinants for the substrate specificity are conserved among the ω-TAs. To this end, key active site residues were identified by docking simulation using the X-ray structure of the ω-TA from Pseudomonas putida. We found that the dual recognition in the L pocket is ascribed to Tyr23, Phe88*, and Tyr152 for hydrophobic interaction and Arg414 for recognition of a carboxylate group. In addition, the docking simulation indicates that Trp60 and Ile262 form the S pocket where the substituent size up to an ethyl group turns out to be sterically allowed. The six key residues were found to be essentially conserved among nine ω-TA sequences, underlying the molecular basis for the high similarity in the substrate selectivity.  相似文献   

7.
Melanocarpus albomyces laccase crystals were soaked with 2,6-dimethoxyphenol, a common laccase substrate. Three complex structures from different soaking times were solved. Crystal structures revealed the binding of the original substrate and adducts formed by enzymatic oxidation of the substrate. The dimeric oxidation products were identified by mass spectrometry. In the crystals, a 2,6-dimethoxy-p-benzoquinone and a C-O dimer were observed, whereas a C-C dimer was the main product identified by mass spectrometry. Crystal structures demonstrated that the substrate and/or its oxidation products were bound in the pocket formed by residues Ala191, Pro192, Glu235, Leu363, Phe371, Trp373, Phe427, Leu429, Trp507 and His508. Substrate and adducts were hydrogen-bonded to His508, one of the ligands of type 1 copper. Therefore, this surface-exposed histidine most likely has a role in electron transfer by laccases. Based on our mutagenesis studies, the carboxylic acid residue Glu235 at the bottom of the binding site pocket is also crucial in the oxidation of phenolics. Glu235 may be responsible for the abstraction of a proton from the OH group of the substrate and His508 may extract an electron. In addition, crystal structures revealed a secondary binding site formed through weak dimerization in M. albomyces laccase molecules. This binding site most likely exists only in crystals, when the Phe427 residues are packed against each other.  相似文献   

8.
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 M phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K m and k cat values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K m and k cat values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity.  相似文献   

9.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

10.
为了研究胰岛素受体结合部位的结构和功能,设计并用固相方法合成了3个六肽.在浓度大于1×103nmol/L时,cyclo(Phe-Phe-Val-Leu-Tyr-Gly)具有明显的胰岛素受体结合活力;H-Phe-Phe-Val-Leu-Tyr-Gly-OH的这一活力则不明显;而H-Gly-Glu-Arg-Gly-Phe-Phe-OH则增强胰岛素和其受体的亲和性.然而,它们都没有体内生物活性.这表明:环六肽部分模拟了胰岛素受体结合部位的空间构象;胰岛素受体结合部位的疏水性和其中的B23Gly-B24Phe-B25Phe对胰岛素和其受体的结合起重要作用.  相似文献   

11.
Prolyl aminopeptidase from Serratia marcescens hydrolyzed x-beta-naphthylamides (x=prolyl, alanyl, sarcosinyl, L-alpha-aminobutylyl, and norvalyl), which suggested that the enzyme has a pocket for a five-member ring. Based on the substrate specificity, novel inhibitors of Pro, Ala, and Sar having 2-tert-butyl-[1,3,4]oxadiazole (TBODA) were synthesized. The K(i) value of Pro-TBODA, Ala-TBODA, and Sar-TBODA was 0.5 microM, 1.6 microM, and 12mM, respectively. The crystal structure of enzyme-Pro-TBODA complex was determined. Pro-TBODA was located at the active site. Four electrostatic interactions were located between the enzyme and the amino group of Pro inhibitors (Glu204:0E1-N:Inh, Glu204:0E2-N:Inh, Glu232:0E1-N:Inh, and Gly46:O-N:Inh), and the residue of the inhibitors was inserted into the hydrophobic pocket composed of Phe139, Leu141, Leu146, Tyr149, Tyr150, and Phe236. The roles of Phe139, Tyr149, and Phe236 in the hydrophobic pocket and Glu204 and Glu232 in the electrostatic interactions were confirmed by site-directed mutagenesis, which indicated that the molecular recognition of proline is achieved through four electrostatic interactions and an insertion in the hydrophobic pocket of the enzyme.  相似文献   

12.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

13.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

14.
Human growth hormone (hGH) binds lactogenic or somatotrophic receptors, creating active heterotrimeric complexes. Comparison of hGH structures, either free or bound to a single lactogenic or somatotrophic receptor, shows binding is associated with structural changes. Changes in hGH structure are unique when binding either lactogenic or somatotrophic receptors and they influence the spatial arrangement of residues constituting the second receptor-binding site. Using site-directed mutagenesis, we identified a contiguous set of largely hydrophobic residues that forms a motif communicating between the two receptor-binding sites of hGH. The residues are external to the receptor-binding epitopes and were identified when their mutation reduced site 2 function without changing site 1 function. The motif includes Phe44, Leu93, Tyr160, Leu163, and Tyr164, located in two hydrophobic clusters between the receptor-binding sites. Their mutation to Glu disrupts hydrophobic interactions and reduces lactogenic activity between 4.7- and 85-fold with little effect on somatotrophic activity or spectroscopic properties. These differential effects indicate that loss of lactogenic activity is not a result of global mis-folding. We propose the loss of lactogenic activity results from disruption of specific hydrophobic clusters that disables the site 1 binding-induced structuring of the second receptor-binding site.  相似文献   

15.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

16.
Aromatic substrate binding to peroxidases is mediated through hydrophobic and hydrogen bonding interactions between residues on the distal side of the heme and the substrate molecule. The effects of perturbing these interactions are investigated by an electronic absorption and resonance Raman study of benzohydroxamic acid (BHA) binding to a series of mutants of horseradish peroxidase isoenzyme C (HRPC). In particular, the Phe179 --> Ala, His42 --> Glu variants and the double mutant His42 --> Glu:Arg38 --> Leu are studied in their ferric state at pH 7 with and without BHA. A comparison of the data with those previously reported for wild-type HRPC and other distal site mutants reaffirms that in the resting state mutation of His42 leads to an increase of 6-coordinate aquo heme forms at the expense of the 5-coordinate heme state, which is the dominant species in wild-type HRPC. The His42Glu:Arg38Leu double mutant displays an enhanced proportion of the pentacoordinate heme state, similar to the single Arg38Leu mutant. The heme spin states are insensitive to mutation of the Phe179 residue. The BHA complexes of all mutants are found to have a greater amount of unbound form compared to the wild-type HRPC complex. It is apparent from the spectral changes induced on complexation with BHA that, although Phe179 provides an important hydrophobic interaction with BHA, the hydrogen bonds formed between His42 and, in particular, Arg38 and BHA assume a more critical role in the binding of BHA to the resting state.  相似文献   

17.
Type A botulinum neurotoxin is one of the most lethal of the seven serotypes and is increasingly used as a therapeutic agent in neuromuscular dysfunctions. Its toxic function is related to zinc-endopeptidase activity of the N-terminal light chain (LC) on synaptosome-associated protein-25 kDa (SNAP-25) of the SNARE complex. To understand the determinants of substrate specificity and assist the development of strategies for effective inhibitors, we used site-directed mutagenesis to investigate the effects of 13 polar residues of the LC on substrate binding and catalysis. Selection of the residues for mutation was based on a computational analysis of the three-dimensional structure of the LC modeled with a 17-residue substrate fragment of SNAP-25. Steady-state kinetic parameters for proteolysis of the substrate fragment were determined for a set of 16 single mutants. Of the mutated residues non-conserved among the serotypes, replacement of Arg-230 and Asp-369 by polar or apolar residues resulted in drastic lowering of the catalytic rate constant (k cat), but had less effect on substrate affinity (K m). Substitution of Arg-230 with Lys decreased the catalytic efficiency (k cat/K m) by 50-fold, whereas replacement by Leu yielded an inactive protein. Removal of the electrostatic charge at Asp-369 by mutation to Asn resulted in 140-fold decrease in k cat/K m. Replacement of other variable residues surrounding the catalytic cleft (Glu-54, Glu-63, Asn-66, Asp-130, Asn-161, Glu-163, Glu-170, Glu-256), had only marginal effect on decreasing the catalytic efficiency, but unexpectedly the substitution of Lys-165 with Leu resulted in fourfold increase in k cat/K m. For comparison purposes, two conserved residues Arg-362 and Tyr-365 were investigated with substitutions of Leu and Phe, respectively, and their catalytic efficiency decreased 140- and 10-fold, respectively, whereas substitution of the tyrosine ring with Asn abolished activity. The altered catalytic efficiencies of the mutants were not due to any significant changes in secondary or tertiary structures, or in zinc content and thermal stability. We suggest that, despite the large minimal substrate size for catalysis, only a few non-conserved residues surrounding the active site are important to render the LC competent for catalysis or provide conformational selection of the substrate.  相似文献   

18.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

19.
Current evidence supports a binding model in which the insulin molecule contains two binding surfaces, site 1 and site 2, which contact the two halves of the insulin receptor. The interaction of these two surfaces with the insulin receptor results in a high affinity cross-linking of the two receptor alpha subunits and leads to receptor activation. Evidence suggests that insulin-like growth factor-I (IGF-I) may activate the IGF-I receptor in a similar mode. So far IGF-I residues structurally corresponding to the residues of the insulin site 1 together with residues in the C-domain of IGF-I have been found to be important for binding of IGF-I to the IGF-I receptor (e.g. Phe(23), Tyr(24), Tyr(31), Arg(36), Arg(37), Val(44), Tyr(60), and Ala(62)). However, an IGF-I second binding surface similar to site 2 of insulin has not been identified yet. In this study, we have analyzed whether IGF-I residues corresponding to the six residues of the insulin site 2 have a role in high affinity binding of IGF-I to the IGF-I receptor. Six single-substituted IGF-I analogues were produced, each containing an alanine substitution in one of the following positions (corresponding insulin residues in parentheses): Glu(9) (His(B10)), Asp(12) (Glu(B13)), Phe(16) (Leu(B17)), Asp(53) (Ser(A12)), Leu(54) (Leu(A13)), and Glu(58) (Glu(A17)). In addition, two analogues with 2 and 3 combined alanine substitutions were also produced (E9A,D12A IGF-I and E9A,D12A,E58A IGF-I). The results show that introducing alanine in positions Glu(9), Asp(12), Phe(16), Leu(54), and Glu(58) results in a significant reduction in IGF-I receptor binding affinity, whereas alanine substitution at position 53 had no effect on IGF-I receptor binding. The multiple substitutions resulted in a 33-100-fold reduction in IGF-I receptor binding affinity. These data suggest that IGF-I, in addition to the C-domain, uses surfaces similar to those of insulin in contacting its cognate receptor, although the relative contribution of the side chains of homologous residues varies.  相似文献   

20.
In Escherichia coli, the ClpAP protease, together with the adaptor protein ClpS, is responsible for the degradation of proteins bearing an amino‐terminal destabilizing amino acid (N‐degron). Here, we determined the three‐dimensional structures of ClpS in complex with three peptides, each having a different destabilizing residue—Leu, Phe or Trp—at its N terminus. All peptides, regardless of the identity of their N‐terminal residue, are bound in a surface pocket on ClpS in a stereo‐specific manner. Several highly conserved residues in this binding pocket interact directly with the backbone of the N‐degron peptide and hence are crucial for the binding of all N‐degrons. By contrast, two hydrophobic residues define the volume of the binding pocket and influence the specificity of ClpS. Taken together, our data suggest that ClpS has been optimized for the binding and delivery of N‐degrons containing an N‐terminal Phe or Leu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号