首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aerolysin is a dimeric protein secreted by Aeromonas spp. that binds to glycosylphosphatidylinositol-anchored receptors on target cells and becomes insertion competent by oligomerizing. The protein comprises two lobes joined by a short arm. The large lobe is thought to be responsible for channel formation, whereas the small lobe is believed to stabilize the dimer, and it may also contain the receptor binding site. We cloned and expressed the DNA for both lobes of the toxin separately and together in A. salmonicida . The large lobe produced alone was secreted, although more poorly than native protein. The small lobe with the arm produced by itself was not secreted. When the large lobe without the arm was co-produced with the small lobe with the arm, both were secreted, and they co-purified as a stoichiometric complex. Analytical ultracentrifugation showed that they form a heterotetramer corresponding to the native dimer. The purified product was nearly as active as aerolysin, but lost activity and became trypsin sensitive above 25°C. The large lobe with the arm was also purified. It was shown to be monomeric, confirming that the small lobe is responsible for dimer stabilization. The large lobe had very low channel-forming activity, although it was correctly processed by trypsin, and it could form stable oligomers. Surprisingly, the large lobe was found to bind to several glycosylphosphatidylinositol-anchored proteins, indicating that it contains at least part of the receptor-binding domain.  相似文献   

2.
In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.  相似文献   

3.
Aerolysin of the Gram-negative bacterium Aeromonas hydrophila consists of small (SL) and large (LL) lobes. The alpha-toxin of Gram-positive Clostridium septicum has a single lobe homologous to LL. These toxins bind to glycosylphosphatidylinositol (GPI)-anchored proteins and generate pores in the cell's plasma membrane. We isolated CHO cells resistant to aerolysin, with the aim of obtaining GPI biosynthesis mutants. One mutant unexpectedly expressed GPI-anchored proteins, but nevertheless bound aerolysin poorly and was 10-fold less sensitive than wild-type cells. A cDNA of N-acetylglucosamine transferase I (GnTI) restored the binding of aerolysin to this mutant. Therefore, N-glycan is involved in the binding. Removal of mannoses by alpha-mannosidase II was important for the binding of aerolysin. In contrast, the alpha-toxin killed GnTI-deficient and wild-type CHO cells equally, indicating that its binding to GPI-anchored proteins is independent of N-glycan. Because SL bound to wild-type but not to GnTI-deficient cells, and because a hybrid toxin consisting of SL and the alpha-toxin killed wild-type cells 10-fold more efficiently than GnTI- deficient cells, SL with its binding site for N-glycan contributes to the high binding affinity of aerolysin.  相似文献   

4.
The alpha toxin produced by Clostridium septicum is a channel-forming protein that is an important contributor to the virulence of the organism. Chinese hamster ovary (CHO) cells are sensitive to low concentrations of the toxin, indicating that they contain toxin receptors. Using retroviral mutagenesis, a mutant CHO line (BAG15) was generated that is resistant to alpha toxin. FACS analysis showed that the mutant cells have lost the ability to bind the toxin, indicating that they lack an alpha toxin receptor. The mutant cells are also resistant to aerolysin, a channel-forming protein secreted by Aeromonas spp., which is structurally and functionally related to alpha toxin and which is known to bind to glycosylphosphatidylinositol (GPI)-anchored proteins, such as Thy-1. We obtained evidence that the BAG15 cells lack N-acetylglucosaminyl-phosphatidylinositol deacetylase-L, needed for the second step in GPI anchor biosynthesis. Several lymphocyte cell lines lacking GPI-anchored proteins were also shown to be less sensitive to alpha toxin. On the other hand, the sensitivity of CHO cells to alpha toxin was increased when the cells were transfected with the GPI-anchored folate receptor. We conclude that alpha toxin, like aerolysin, binds to GPI-anchored protein receptors. Evidence is also presented that the two toxins bind to different subsets of GPI-anchored proteins.  相似文献   

5.
The channel-forming protein aerolysin must cross both the inner and outer bacterial membranes during its secretion from Aeromonas hydrophila or from Aeromonas salmonicida containing the cloned structural gene. We examined the fate of three mutant proteins in which Trp-227, near the middle of the amino acid chain, was replaced with glycine, leucine, or phenylalanine by site-directed mutagenesis. All three proteins crossed the inner membrane and entered the periplasm in the same way as wild-type, and in each case the signal sequence was removed correctly. Little or none of the proaerolysin substituted with glycine or leucine was released into the culture supernatant. Instead, significant amounts became associated with the outer membrane. The Phe-227 protoxin was secreted by the bacteria but at a reduced rate. The leucine and phenylalanine mutant proteins were purified and compared with native proaerolysin. They were processed correctly to the mature forms by treatment with trypsin, and like native aerolysin, both were resistant to further proteolysis. In each case, processing was followed by the formation of oligomers similar to those produced by native toxin. The hemolytic activity of the processed Phe-227 mutant was one-quarter that of wild-type toxin whereas Leu-227 aerolysin had less than one-hundredth the wild-type activity. These results are further evidence that aerolysin is secreted in at least two steps. As well, they show that the last step, crossing the outer membrane, can be blocked by an apparently small change in the structure of the protein.  相似文献   

6.
The promoterless structural genes for aerolysin and the extracellular phospholipase of Aeromonas hydrophila were inserted into a multi-host-range expression vector and transferred into Aeromonas salmonicida and Escherichia coli. In both species, gene expression was under the control of the inducible tac promoter of the vector. Neither the phospholipase nor the aerolysin was released by intact E. coli. Instead, both proteins accumulated in the periplasm, leading to reduced growth and eventual cell death. When the aerolysin gene inserted into the vector contained its own promoter, the toxin was expressed constitutively by A. salmonicida but not by E. coli. Production of aerolysin and the phospholipase by A. salmonicida did not affect cell growth, and the proteins were correctly processed and exported by intact cells. Both proteins could also be detected in the periplasm, where their concentrations were considerably higher then they were outside the cells. Periplasmic aerolysin was rapidly released when cells were transferred to fresh medium, indicating that this compartment is part of the normal export pathway and that the protein is not shunted there as a consequence of overproduction. Plasmid-coded aerolysin did not appear to compete with the cell proteins for export components, as even when very large quantities of aerolysin were being exported by A. salmonicida, there was no effect on chromosomal protease release and only a modest reduction in the export of chromosomal phospholipase.  相似文献   

7.
Aerolysin is a channel-forming toxin secreted by Aeromonas spp. that binds to glycosyl phosphatidylinositol (GPI)-anchored proteins, such as Thy-1, on sensitive target cells. Receptor binding is followed first by oligomerization of the toxin and then by insertion of the oligomers into the membrane to form stable channels that disrupt the permeability barrier. Human immunodeficiency virus type 1 (HIV-1) produced from T cells is known to incorporate Thy-1 and other GPI-anchored proteins into its membrane. Here, we show that aerolysin is capable of neutralizing HIV-1 in a dose-dependent manner and that neutralization depends upon the presence of these proteins in the viral envelope. Pretreatment with phosphatidylinositol-specific phospholipase C to remove GPI-anchored proteins greatly reduced HIV-1 sensitivity to the toxin, and virus originating from a mutant cell line that lacks GPI-anchored proteins was not neutralized. Aerolysin variants with single amino acid changes that prevent oligomerization or insertion of the toxin were unable to inactivate the virus, implying that channel formation is necessary for neutralization to occur. These findings represent the first evidence that a pathogenic human virus can be neutralized by a bacterial toxin.  相似文献   

8.
Aerolysin is a toxin (protein in nature) secreted by the strains of Aeromonas spp. and plays an important role in the virulence of Aeromonas strains. It has also found several applications such as for detection of glycosylphosphatidylinositol (GPI)-anchored proteins etc. A. hydrophila is a ubiquitous Gram-negative bacterium which causes frequent harm to the aquaculture. To obtain a significant amount of recombinant aerolysin in the active form, in this study, we expressed the aerolysin in E. coli under the control of T7 RNase promoter. The coding region (AerA-W) of the aerA gene of A. hydrophila XS91-4-1, excluding partial coding region of the signal peptide was cloned into the vector pET32a and then transformed into E. coli b121. After optimizing the expression conditions, the recombinant protein AerA-W was expressed in a soluble form and purified using His.Bind resin affinity chromatography. Recombinant aerolysin showed hemolytic activity in the agar diffusive hemolysis test. Western blot analysis demonstrated good antigenicity of the recombinant protein.  相似文献   

9.
The gene for the hole-forming toxin aerolysin from Aeromonas hydrophila was sequenced. Although most of the sequence seems unrelated to that of Staphylococcus aureus alpha-toxin, both proteins are very hydrophilic, and they each contain a nearly identical string of 10 amino acids.  相似文献   

10.
The precursor to the hole-forming toxin aerolysin has been purified in high yield from culture supernatants of a mutant of Aeromonas salmonicida containing the cloned structural gene. The mutant strain was generated by Tn5 mutagenesis. It released little or no protease or other extracellular proteins, including phospholipase, suggesting that it is a regulatory mutant. The absence of protease allowed the isolation of protoxin free from contaminating aerolysin. Typically, more than 50 mg of pure proaerolysin was obtained from 2 L of culture supernatant. The purified protein was completely unable to lyse human erythrocytes without prior activation with trypsin.  相似文献   

11.
The pore-forming toxin aerolysin is secreted by Aeromonas hydrophila as an inactive precursor. Based on chemical cross-linking and gel filtration, we show here that proaerolysin exists as a monomer at low concentrations but is dimeric above 0.1 mg/ml. At intermediate concentrations, monomers and dimers appeared to be in rapid equilibrium. All together our data indicate that, at low concentrations, the toxin is a monomer and that this species is competent for receptor binding. In contrast, a mutant toxin that forms a covalent dimer was unable to bind to target cells.  相似文献   

12.
Aerolysin, a secreted bacterial toxin from Aeromonas hydrophila, binds to glycosylphosphatidylinositol (GPI)-anchored protein and kills the cells by forming pores. Both GPI and N-glycan moieties of GPI-anchored proteins are involved in efficient binding of aerolysin. We isolated various Chinese hamster ovary (CHO) mutant cells resistant to aerolysin. Among them, CHOPA41.3 mutant cells showed several-fold decreased expression of GPI-anchored proteins. After transfection of N-acetylglucosamine transferase I (GnT1) cDNA, aerolysin was efficiently bound to the cells, indicating that the resistance against aerolysin in this cells was mainly ascribed to the defect of N-glycan maturation. CHOPA41.3 cells also accumulated GPI intermediates lacking ethanolamine phosphate modification on the first mannose. After stable transfection of PIG-N cDNA encoding GPI-ethanolamine phosphate transferase1, a profile of accumulated GPI intermediates became similar to that of GPI transamidase mutant cells. It indicated, therefore, that CHOPA41.3 cells are defective in GnT1, ethanolamine phosphate modification of the first mannose, and attachment of GPI to proteins. The GPI accumulation in CHOPA41.3 cells carrying PIG-N cDNA was not normalized after transfection with cDNAs of all known components in GPI transamidase complex. Microsomes from CHOPA41.3 cells had normal GPI transamidase activity. Taken together, there is an unknown gene required for efficient attachment of GPI to proteins.  相似文献   

13.
Scanning microphotolysis (Scamp), a recently developed photobleaching technique, was used to analyze the transport of two small organic anions and one inorganic cation through single pores formed in human erythrocyte membranes by the channel-forming toxin aerolysin secreted by Aeromonas species. The transport rate constants of erythrocyte ghosts carrying a single aerolysin pore were determined to be (1.83 +/- 0.43) x 10(-3) s-1 for Lucifer yellow, (0.33 +/- 0.10) x 10(-3) s-1 for carboxyfluorescein, and (8.20 +/- 2.30) x 10(-3) s-1 for Ca2+. The radius of the aerolysin pore was derived from the rate constants to be 19-23 A, taking steric hindrance and viscous drag into account. The size of the Ca2+ rate constant implies that at physiological extracellular Ca2+ concentrations (> 1 mM) the intracellular Ca2+ concentration would be elevated to the critical level of > 1 microM in much less than a second after formation of a single aerolysin pore in the plasma membrane. Thus changes in the levels of Ca2+ or other critical intracellular components may be more likely to cause cell death than osmotic imbalance.  相似文献   

14.
15.
Paroxysmal nocturnal hemoglobinuria (PNH), a hematopoietic stem cell disorder, is caused by the loss of glycosylphosphatidylinositol (GPI)-anchored proteins on the cell membrane. PNH can be simply diagnosed by flow cytometry using monoclonal antibodies against GPI-anchored proteins or fluorescent-tagged aerolysin, a bacterial toxin that binds GPI anchored proteins. Clostridium septicum alpha toxin is homologous to aerolysin and specifically binds GPI-anchored proteins. Previously, we found that an alpha toxin m45 mutant with two amino acid changes, S189C/S238C, lost cytotoxicity but still possessed binding activity for GPI-anchored proteins. To use this mutant toxin as a diagnostic probe in flow cytometry, we constructed the EGFP-AT(m45) expression vector, comprising a S189C/S238C alpha toxin mutant with EGFP and His tags at the N and C termini, respectively. The recombinant EGFP-AT(m45) was easily purified using single-step affinity chromatography against His tag from Escherichia coli. EGFP-AT(m45) bound to CHO and HeLa cells in a similar manner to monoclonal antibodies against GPI-anchored proteins or aerolysin. In whole blood from a PNH patient, GPI-deficient granulocytes could be differentiated by EGFP-AT(m45) using the same procedure as that employed with commercially available monoclonal antibodies. Therefore, nontoxic EGFP-conjugated C. septicum alpha toxin could be used clinically for PNH diagnosis.  相似文献   

16.
The synthesis and export of aerolysin, an extracellular protein toxin released by the gram-negative bacterium Aeromonas hydrophila, was studied by pulse-labeling with [35S]methionine. The toxin was synthesized as a higher-molecular-weight precursor. This was processed cotranslationally, resulting in the appearance within the cell of the mature protein, which was then exported to the supernatant. Precursor aerolysin accumulated in cells incubated in the presence of carbonyl cyanide m-chlorophenyl hydrazone, a substance which also inhibited the export of mature aerolysin from the cell. The entrapped mature toxin could not be shocked from the cells, although it could be digested by protease applied to shocked cells. The toxin was processed and translocated across the inner membrane of pleiotropic export mutants and accumulated in the periplasm. The results indicate that more than one step is required for the export of the protein and that aerolysin does not cross the inner and outer membranes simultaneously.  相似文献   

17.
Aerolysin is a channel-forming bacterial toxin that binds to glycosylphosphatidylinositol (GPI) anchors on host cell-surface structures. The nature of the receptors and the location of the receptor-binding sites on the toxin molecule were investigated using surface plasmon resonance. Aerolysin bound to the GPI-anchored proteins Thy-1, variant surface glycoprotein, and contactin with similar rate constants and affinities. Enzymatic removal of N-linked sugars from Thy-1 did not affect toxin binding, indicating that these sugars are not involved in the high affinity interaction with aerolysin. Aerolysin is a bilobal protein, and both lobes were shown to be required for optimal binding. The large lobe by itself bound Thy-1 with an affinity that was at least 10-fold weaker than that of the whole toxin, whereas the small lobe bound the GPI-anchored protein at least 1000-fold more weakly than the intact toxin. Mutation analyses provided further evidence that both lobes were involved in GPI anchor binding, with certain single amino acid substitutions in either domain leading to reductions in affinity of as much as 100-fold. A variant with single amino acid substitutions in both lobes of the protein was completely unable to bind the receptor. The membrane protein glycophorin, which is heavily glycosylated but not GPI-anchored, bound weakly to immobilized proaerolysin, suggesting that interactions with cell-surface carbohydrate structures other than GPI anchors may partially mediate toxin binding to host cells.  相似文献   

18.
Aerolysin is a bacterial pore-forming toxin that is secreted as an inactive precursor, which is then processed at its COOH terminus and finally forms a circular heptameric ring which inserts into membranes to form a pore. We have analyzed the stability of the precursor proaerolysin and the heptameric complex. Equilibrium unfolding induced by urea and guanidinium hydrochloride was monitored by measuring the intrinsic tryptophan fluorescence of the protein. Proaerolysin was found to unfold in two steps corresponding to the unfolding of the large COOH-terminal lobe followed by the unfolding of the small NH(2)-terminal domain. We show that proaerolysin contains two disulfide bridges which strongly contribute to the stability of the toxin and protect it from proteolytic attack. The stability of aerolysin was greatly enhanced by polymerization into a heptamer. Two regions of the protein, corresponding to amino acids 180-307 and 401-427, were identified, by limited proteolysis, NH(2)-terminal sequencing and matrix-assisted laser desorption ionization-time of flight, as being responsible for stability and maintenance of the heptamer. These regions are presumably involved in monomer/monomer interactions in the heptameric protein and are exclusively composed of beta structure. The stability of the aerolysin heptamer is reminiscent of that of pathogenic, fimbrial protein aggregates found in a variety of neurodegenerative diseases.  相似文献   

19.
Glycosylphosphatidylinositol (GPI) anchors various proteins to the membrane of eukaryotic cells. Paroxysmal nocturnal hemoglobinuria (PNH) is a hematopoietic stem cell disorder that is primarily due to the lack of GPI-anchored proteins on the surface of blood cells. To detect the GPI-deficient cells in PNH patients, we modified alpha toxin, a pore-forming toxin of the Gram-positive bacterium Clostridium septicum. We first showed that aerolysin, a homologous toxin from Aeromonas hydrophila, bound to both of Chinese hamster ovary cells deficient of N-glycan maturation as well as GPI biosynthesis at a significant level. However, alpha toxin bound to the mutant cells of N-glycosylation, but not to GPI-deficient cells. It suggested that alpha toxin could be used as a specific probe to differentiate only GPI-deficient cells. As a diagnostic probe, alpha toxin must be the least cytotoxic while maintaining its affinity for GPI. Thus, we constructed several mutants. Of these, the mutants carrying the Y155G or S189C/S238C substitutions bound to GPI as well as the wild-type toxin. These mutants also efficiently underwent proteolytic activation and aggregated into oligomers on the cell surface, which are events that precede the formation of a pore in the host cell membrane, leading to cell death. Nevertheless, these mutants almost completely failed to kill host cells. It was revealed that the substitutions affect the events that follow oligomerization. The S189C/S238C mutant toxin differentiated GPI-deficient granulocyte and PMN, but not red blood cells, of a PNH patient from GPI-positive cells at least as sensitively as the commercial monoclonal antibodies that recognize the CD59 or CD55 GPI proteins on blood cells. Thus, this modified bacterial toxin can be employed instead of costly monoclonal antibodies to diagnose PNH patients.  相似文献   

20.
Collagen-binding protein (CNBP) synthesized by Aeromonas veronii is located conserved within the subcellular fraction. The results of this study show that 98% of the total CNBP produced by Aer. veronii is present in the extracellular medium, and that the remaining CNBP is distributed either on the cell surface, within the periplasm or anchored on the outer membrane. CNBP is specifically secreted from Aer. veronii into the culture medium, because all the beta-lactamase activity was located in the cells and could be released by polymixin B extraction of periplasmic proteins. CNBP was produced at growth temperatures from 12 degrees C to 42 degrees C, but not at 4 degrees C. The findings indicate that the level of CNBP in the medium increases during the exponential growth phase and reaches a maximum during the early stationary phase. There was less CNBP production in poor nutrient MMB medium than in the rich LB nutrient medium. CNBP secretion, in contrast to aerolysin secretion, was unaffected by the exeA mutation of Aer. hydrophila. It is concluded that CNBP secretion from Aer. veronii must be achieved by a mechanism different from that reported for aerolysin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号