首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The P2Y receptor family is activated by extracellular nucleotides such as ATP and UTP. P2Y receptors regulate physiological functions in numerous cell types. In lung, the P2Y2 receptor subtype plays a role in controlling Cl- and fluid transport. Besides ATP or UTP, also diadenosine tetraphosphate (Ap4A), a stable nucleotide, seems to be of physiological importance. In membrane preparations from human and rat lung we applied several diadenosine polyphosphates to investigate whether they act as agonists for G protein-coupled receptors. We assessed this by determining the stimulation of [35S]GTPgammaS binding. Stimulation of [35S]GTPgammaS binding to G proteins has already been successfully applied to elucidate agonist binding to various G protein-coupled receptors. Ap(n)A (n = 2 to 6) enhanced [35S]GTPgammaS binding similarly in human and rat lung membranes, an indication of the existence of G protein-coupled receptor binding sites specific for diadenosine polyphosphates. Moreover, in both human and rat lung membranes comparable pharmacological properties were found for a diadenosine polyphosphate ([3H]Ap4A) binding site. The affinity for Ap2A, Ap3A, Ap4A, Ap5A, and Ap6A was also comparable. 8-Diazido-Ap4A and ATP were less potent, whereas the pyrimidine nucleotide UTP showed hardly any affinity. Thus, we present evidence that different diadenosine polyphosphates bind to a common G protein-coupled receptor binding site in membranes derived either from human or rat lung.  相似文献   

2.
Simanshu DK  Savithri HS  Murthy MR 《Proteins》2008,70(4):1379-1388
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATP. Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap4A bound to the active site pocket suggesting the presence of Ap4A synthetic activity in TdcD. Binding of Ap4A to the enzyme was confirmed by the structure determination of a TdcD-Ap4A complex obtained after cocrystallization of TdcD with commercially available Ap4A. Mass spectroscopic studies provided further evidence for the formation of Ap4A by propionate kinase in the presence of ATP. In the TdcD-Ap4A complex structure, Ap4A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.  相似文献   

3.
1. Procedures are given for the syntheses of alpha,omega-dinucleoside 5'-polyphosphates as inhibitors of adenylate kinases. The following order for the ability of inhibiting pig muscle adenylate kinase was observed: Ap5A greater than 1:N6-etheno-Ap5A greater than Ap6A greater than Gp5A greater than Ap4A greater than Up5A. The synthesis of adenosine tetraphosphate, the starting material for Ap5A, is also described. 2. One molecule of pig muscle adenylate kinase binds one molecule of Ap5A. The difference spectrum of Ap5A-adenylate kinase with its maximum of 5050 M-1 - cm-1 at 271 nm, as well as the fluorescence properties of 1:N6-etheno-Ap5A can be used for kinetic and binding studies. 3. The specific binding of the negatively charged Ap5A was exploited in the preparation of human muscle adenylate kinase. The enzyme was purified to homogeneity with an overall yield of 65%, the absolute value being 70 mg per kg of muscle. 4. The effect of Ap5A on adenylate kinase in extracts of various cells and cell organelles was tested. A ratio of 1:50 (mol/mol) for Ap5A to other nucleotides was used for suppressing the adenylate kinase activity in extracts of mammalian and insect skeletal muscel, of human erythrocytes and of Staphylococcus aureus. A ratio of 1:5 was found to be necessary for the adenylate kinase from tobacco leaves and spinach chloroplasts, and a ratio of 2:1 was needed for suppressing the adenylate kinase from bovine liver mitochondria, human kidney homogenate and from Escherichia coli. Ap5A appears not to be metabolized in any of the above extracts. These results indicate that Ap5A can be used for evaluating the contribution of adenylate kinase to the production of ATP fro ADP in energy-transducing systems. 5. Contaminating adenylate kinase can be inhibited by a concentration of Ap5A which does not interfere in the study of many (phospho)kinases and ATPases. The applications of Ap5A in the assay for nucleoside diphosphokinase and in the study of mechanical and biochemical properties of contractile proteins are representative examples. The use of Ap5A makes it possible to study the effect of ADP per se in such systems. 6. Sepharose-bound Ap5A was used for removing traces of adenylate kinase from samples of myosin and creatine kinase. 7. In the presence of Ap5A the activity of creatine kinase was measured in hemolytic serum of venous blood, in plasma of capillary blood and in samples of whole blood after complete hemolysis had been induced. The clinical significance of these findings are shown for cases of myocardial infarction and muscular dystrophy.  相似文献   

4.
T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of labeled Ap4A was observed: ATP was acting as both donor (Km, microm) and acceptor (Km, mm) of AMP from the enzyme. Whereas, as previously known, ATP or dATP (but not other nucleotides) were able to form the E-AMP complex, the specificity of a compound to be acceptor of AMP from the E-AMP complex was very broad, and with Km values between 1 and 2 mm. In the presence of a low concentration (0.02 mm) of [alpha-32P] ATP (enough to form the E-AMP complex, but only marginally enough to form Ap4A) and 4 mm of the indicated nucleotides or P3, the relative rate of synthesis of the following radioactive (di)nucleotides was observed: Ap4X (from XTP, 100); Ap4dG (from dGTP, 74); Ap4G (from GTP, 49); Ap4dC (from dCTP, 23); Ap4C (from CTP, 9); Ap3A (from ADP, 5); Ap4ddA, (from ddATP, 1); p4A (from P3, 200). The enzyme also synthesized efficiently Ap3A in the presence of 1 mm ATP and 2 mm ADP. The following T4 RNA ligase donors were inhibitors of the synthesis of Ap4G: pCp > pAp > pA2'p.  相似文献   

5.
The diadenine nucleotides diadenosine 5',5"-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) can be released from platelets and were shown to act as long-lived signal molecules. Accordingly, we studied their potential effect on hepatic metabolism. In isolated perfused rat liver, Ap3A and Ap4A increase the portal pressure, lead to a transient net release of Ca2+, complex net K+ movement across the liver plasma membrane and stimulate hepatic glucose output and 14CO2 production from [1-14C]glutamate. These responses resemble that obtained with extracellular ATP. This and studies on the additivity of ATP and Ap4A effects suggest similar mechanisms mediating the ATP and diadenine nucleotide effects in the liver. Ap3A and Ap4A increased the activity of glycogen phosphorylase a in isolated hepatocyte suspensions by about 100%, pointing to a direct effect of these nucleotides on hepatic parenchymal cells. A response of hepatic non-parenchymal cells to diadenine nucleotide infusion is suggested by a marked stimulation of thromboxane and prostaglandin D2 release from perfused liver. Studies with the thromboxane A2 receptor antagonist BM 13.177 (20 microM) show that the pressure and glucose response to the diadenine nucleotides is partially mediated by this thromboxane formation. Studies with retrograde and sequential liver perfusions suggest a less efficient degradation of the diadenine nucleotides during a single liver passage compared to extracellular ATP. The data suggest that Ap3A and Ap4A are potential regulators of hepatic hemodynamics and metabolism, involving complex interactions between hepatic parenchymal cells and hepatic non-parenchymal cells, including eicosanoids as signal molecules.  相似文献   

6.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 2-6) inhibited phosphorylation of immunoglobulin G from tumor-bearing rabbits (TBR IgG) by pp60src protein kinase purified from Rous sarcoma virus-transformed rat tumor cells. Ap4A, a nucleotide associated with eukaryotic cell proliferation, was one of the most effective inhibitors in the series, causing 50% inhibition of TBR IgG phosphorylation at 15 microM. Ap4A inhibited pp60src-dependent phosphorylation of TBR IgG in solution and immunoprecipitates, as well as the phosphorylation of tubulin, microtubule-associated proteins, and vinculin. Under similar assay conditions, Ap4A did not inhibit phosphorylation of histone H2b by cAMP- or cGMP-dependent protein kinases. Ap4A appears to interact noncovalently with the enzyme, because removal of pp60src by immunoprecipitation from solutions containing Ap4A restored activity to uninhibited levels. A 100-fold increase in ATP (4-400 nM) caused a 13-fold increase in the 50% inhibitory concentration of Ap4A (2.5-33 microM), consistent with the interpretation that Ap4A competes for an ATP-binding site on the pp60src molecule. The simplest explanation of these results is that Ap4A binds to the phosphodonor site for ATP.  相似文献   

7.
The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A.  相似文献   

8.
Dinucleoside polyphosphates are well described as direct vasoconstrictors and as mediators with strong proliferative properties, however, less is known about their effects on nucleotide-converting pathways. Therefore, the present study investigates the effects of Ap(4)A (diadenosine tetraphosphate), Up(4)A (uridine adenosine tetraphosphate) and Ap(5)A (diadenosine pentaphosphate) and the non-selective P2 antagonist suramin on human serum and endothelial nucleotide-converting enzymes. Human serum and HUVECs (human umbilical vein endothelial cells) were pretreated with various concentrations of dinucleotide polyphosphates and suramin. Adenylate kinase and NDP kinase activities were then quantified radiochemically by TLC analysis of the ATP-induced conversion of [(3)H]AMP and [(3)H]ADP into [(3)H]ADP/ATP and [(3)H]ATP respectively. Endothelial NTPDase (nucleoside triphosphate diphosphohydrolase) activity was additionally determined using [(3)H]ADP and [(3)H]ATP as preferred substrates. Dinucleoside polyphosphates and suramin have an inhibitory effect on the serum adenylate kinase [pIC(50) values (-log IC(50)): Ap(4)A, 4.67+/-0.03; Up(4)A, 3.70+/-0.10; Ap(5)A, 6.31+/-0.03; suramin, 3.74+/-0.07], as well as on endothelial adenylate kinase (pIC(50) values: Ap(4)A, 4.17+/-0.07; Up(4)A, 2.94+/-0.02; Ap(5)A, 5.97+/-0.04; suramin, 4.23+/-0.07), but no significant effects on serum NDP kinase, emphasizing the selectivity of these inhibitors. Furthermore, Ap(4)A, Up(4)A, Ap(5)A and suramin progressively inhibited the rates of [(3)H]ADP (pIC(50) values: Ap(4)A, 3.38+/-0.09; Up(4)A, 2.78+/-0.06; Ap(5)A, 4.42+/-0.11; suramin, 4.10+/-0.07) and [(3)H]ATP (pIC(50) values: Ap(4)A, 3.06+/-0.06; Ap(5)A, 3.05+/-0.12; suramin, 4.14+/-0.05) hydrolyses by cultured HUVECs. Up(4)A has no significant effect on the endothelial NTPDase activity. Although the half-lives for Ap(4)A, Up(4)A and Ap(5)A in serum are comparable with the incubation times of the assays used in the present study, secondary effects of the dinucleotide metabolites are not prominent for these inhibitory effects, since the concentration of metabolites formed are relatively insignificant compared with the 800 mumol/l ATP added as a phosphate donor in the adenylate kinase and NDP kinase assays. This comparative competitive study suggests that Ap(4)A and Ap(5)A contribute to the purinergic responses via inhibition of adenylate-kinase-mediated conversion of endogenous ADP, whereas Up(4)A most likely mediates its vasoregulatory effects via direct binding-mediated mechanisms.  相似文献   

9.
Bovine tryptophanyl-tRNA synthetase (E.C.6.1.1.2) lacking Zn2+ ions removed by chelation with phosphonate analog of P1,P4-bis-(5'-adenosyl)tetraphosphate (Ap4A) was obtained (E-Zn). E-Zn lost the ability to form tryptophanyl adenylate, however it hydrolyses ATP to ADP and further on to AMP and Pi. GTP serves as a substrate with Km approximately 0.6 mM. It is proposed that the hydrolysable nucleotides bind to a nucleotide binding site(s) distinguishable from the substrate (catalytic) ones. After incubation of E-Zn with Zn2+ and Mg2+ the initial catalytic activity (ATP-PPi exchange and amino-acylation reactions) is restored whereas the hydrolytic activity becomes fully suppressed.  相似文献   

10.
Adenylate kinase activity in ejaculated bovine sperm flagella   总被引:3,自引:0,他引:3  
Adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) activity was detected in the flagella of ejaculated bovine spermatozoa. This activity provided sufficient ATP to produce normal motility in cells permeabilized with digitonin and treated with 0.5 mM MgADP. In the presence of ADP, adenylate kinase activity was inhibited by P1,P5-di(adenosine 5')-pentaphosphate (Ap5A), an adenylate kinase-specific inhibitor, and motility was stopped. ATP-supported motility was not affected by Ap5A. Mitochondrial adenylate kinase activity allowed AMP to stimulate respiration in permeabilized sperm. Adenylate kinase activity in tail fragments was most active in a pH range from 7.6 to 8.4, and a similar pH sensitivity was observed for this enzyme activity in a hypotonic extract of whole sperm. The apparent km of adenylate kinase activity in permeabilized tail fragments was about 1.0 mM ADP in the direction of ATP synthesis. The fluctuation of nucleotide concentrations in normal and metabolically stimulated sperm suggested that adenylate kinase was most active when the cell was highly motile, although adenylate kinase activity did not appear to be coupled strictly with motility.  相似文献   

11.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

12.
The most potent low molecular weight inhibitors of pancreatic RNase superfamily enzymes reported to date are synthetic derivatives of adenosine 5(')-pyrophosphate. Here we have investigated the effects of six natural nucleotides that also incorporate this moiety (NADP(+), NADPH, ATP, Ap(3)A, Ap(4)A, and Ap(5)A) on the activities of RNase A and two of its homologues, eosinophil-derived neurotoxin and angiogenin. With eosinophil-derived neurotoxin and angiogenin, Ap(5)A is comparable to the tightest binding inhibitors identified previously (K(i) values at pH 5.9 are 370 nM and 100 microM, respectively); it ranks among the strongest small antagonists of RNase A as well (K(i)=230 nM). The K(i) for NADPH with angiogenin is similar to that of Ap(5)A. These findings suggest that Ap(5)A and NADPH may serve as useful new leads for inhibitor design. Examination of inhibition under physiological conditions indicates that NADPH, ATP, and Ap(5)A may suppress intracellular RNase activity significantly in vivo.  相似文献   

13.
The kinetic mechanism of protein kinase C (PKC) was analyzed via inhibition studies using the product MgADP, the nonhydrolyzable ATP analogue adenosine 5'-(beta,gamma-imidotriphosphate) (MgAMPPNP), the peptide antagonist poly(L-lysine), and several naturally occurring ATP analogues that are produced in rapidly growing cells, i.e., the diadenosine oligophosphates (general structure: ApnA; n = 2-5). By use of histone as the phosphate acceptor, the inhibition of PKC by MgAMPPNP and MgADP was found to be competitive vs MgATP (suggesting that these compounds bind to the same enzyme form), whereas their inhibition vs histone was observed to be noncompetitive. In contrast, the inhibition by poly(L-lysine) appeared competitive vs histone but uncompetitive vs MgATP, which is consistent with a model wherein MgATP binding promotes the binding of poly(L-lysine) or histone. With the diadenosine oligophosphates, the degree of PKC inhibition was found to increase according to the number of intervening phosphates. The diadenosine oligophosphates Ap4A and Ap5A were the most effective antagonists of PKC, with Ap5A being approximately as potent as MgADP and MgAMPPNP. However, as opposed to MgADP and MgAMPPNP, Ap4A and Ap5A appear to act as noncompetitive inhibitors vs both MgATP and histone, suggesting that they can interact at several points in the reaction pathway. These studies support the concept of a steady-state mechanism where MgATP binding preferentially precedes that of histone, followed by the release of phosphorylated substrate and MgADP. Furthermore, these results indicate a differential interaction of the diadenosine oligophosphates with PKC, when compared to other adenosine nucleotides.  相似文献   

14.
Glycerinated rabbit psoas muscle fibers containing native CPK, ATPase, and myokinase activities were used and isometric contraction and relaxation responses to either ADP or ATP + CP or to ATP alone in the presence and absence of P1, P5-di(adenosine-5'-pentaphosphate), a myokinase inhibitor, were compared. In previous (14) work it was shown that CP generated more efficient and faster contraction and relaxation of glycerinated muscle fibers than ATP. The present work deals with the role of myokinase in the differential response of fibers to CP and ATP. Inhibition of the myokinase activity of these fibers caused slight diminution of the rate of contraction at physiological concentrations of ATP. Uninhibited fibers were not able to reach maximum contraction, because the tension began to drop gradually even in the presence of Ca2+. Addition of Ap5A permitted maximum contraction and the ability to stay at the contracted state. In the case of CP + adenosine nucleotides (ATP or ADP), myokinase activity decreased the rate of tension development which was statistically significant after 5-7 sec of contraction. Thus, a higher tension was obtainable when myokinase was inhibited. At high concentration of adenine nucleotides (greater than 2 mM) and in the absence of Ap5A, not only the maximum tension never was reached, but a spontaneous drop in tension was observed before addition of EGTA, as was seen with ATP alone. Relaxation was faster and more complete in the presence of uninhibited myokinase activity except that the ADP was low (125 mM). These observations provide further evidence for a close functional interaction of these three enzymes in the mechanism of contraction and relaxation, giving further support to the notion of the creatine-phosphocreatine energy shuttle.  相似文献   

15.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

16.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

17.
Binding of adenosine(5')tetraphospho(5')adenosine (Ap4A) to histones of calf thymus was investigated by non-equilibrium dialysis. Histone H1 interacts with the dinucleotide via two strong sites and competes with Mg2+ ions. Intrinsic dissociation constants were 1.6 +/- 0.1 microM and 11 +/- 1 microM for zero and 0.4 mm-Mg2+ concentration respectively. Binding of poly(dT) and of other nucleotides to histone H1 was measured in an [3H]Ap4A-competition assay. The tendency to form complexes among nucleotides was highest for bisnucleoside tetraphosphates and decreased in the order poly(dT) greater than or equal to Ap4A approximately Gp4G greater than Ap4 much greater than Ap3A approximately Ap5A greater than or equal to ATP, GTP and dTTP. The co-ordination complex derived from Ap4A and cis-diammine-dichloroplatinum(II) was not reactive. The other histones of calf thymus also bound Ap4A with affinities decreasing in the order H4 approximately H3 greater than H1 greater than H2b greater than H2a. Ap4A stimulated the exchange of histone H1 between nucleosomes, but this effect was referred to ionic strength. It did not bind to assembled nucleosomes. Binding of Ap4A to histone H1 was decreased by salt (NaCl). At physiological saline concentration the value of the dissociation constant is commensurable with the value of the Ap4A concentration in the nucleus and thus indicative of complex-formation in vivo.  相似文献   

18.
Granulocyte/macrophage-colony stimulating factor (GM-CSF) is a regulatory cytokine important in the proliferative and functional activation of hematopoietic cells. It belongs to a family of 20 kDa or less acidic glycoprotein molecules found in a broad range of cellular sources. On the basis of the previously reported nucleotide-binding properties of interleukin-2 (IL-2), atrial natriuretic factor (ANF), and glucagon, the interaction of GM-CSF with nucleotides was investigated. Using radiolabeled 8-azidoadenosine-containing photoprobes of ATP ([gamma-32P]-8N3ATP) and Ap4A, the putative biological alarmone ([beta'-32P]-8N3Ap4A), we have identified a nucleotide binding site on recombinant murine GM-CSF (rmGM-CSF). Specificity of binding was demonstrated by saturation and competition experiments. Saturation of photoinsertion by [gamma-32P]-8N3ATP and [beta'-32P]-8N3Ap4A occurs with apparent Kd's of 10 and 0.7 microM, respectively. Using an immobilized Fe3+ affinity chromatography technique, developed specifically for the isolation of photolabeled peptides, a single radiolabeled peptide was isolated. It was identified as amino acids 5-14 near the N-terminus of GM-CSF. This peptide region has been shown in previous studies to be critical for biological activity. Also consistent with this observation is our finding that the photolabeled GM-CSF has lost most, if not all, of its biological activity, as determined by a cellular proliferation assay.  相似文献   

19.
Photoaffinity labeling with azidoadenine nucleotides was used to identify peptides from the ATP and AMP binding domains on chicken muscle adenylate kinase. Competition binding studies and enzyme assays showed that the 8-azido analogues of Ap4A and ATP modified only the MgATP2- site of adenylate kinase, whereas the 2-azido analogue of ADP modified the enzyme at both the ATP and AMP sites. The positions of the two nucleotide binding sites on the enzyme were deduced by isolating and sequencing the modified peptides. Photolabeled peptides were isolated by a new procedure that used metal chelate chromatography to affinity purify the photolabeled peptides prior to final purification by reverse-phase HPLC. The sequences of the peptides that were photolabeled with the 8-azido analogues corresponded to residues K28-L44, T153-K166, and T125-E135 of the chicken muscle enzyme. The residues that were present in both tryptic- and Staphylococcus aureus V-8 protease-generated versions of these peptides were assigned to the ATP binding domain on the basis of selective photoaffinity labeling with the 8-azidoadenine analogues. These peptides and an additional peptide corresponding to positions I110-K123 were photolabeled with 2-N3ADP. Since I110-K123 was photolabeled by 2-N3ADP but not by 8-N3Ap4A, it was assigned to the AMP binding domain.  相似文献   

20.
Stimulation of a Ca(2+)-induced Ca(2+)-release channel from skeletal muscle sarcoplasmic reticulum by various adenosine(5')oligophospho(5')adenosines (ApnA, n = 2-6) by a rapid quenching technique using radioactive calcium was studied. Ap4A, Ap5A and Ap6A, as well as adenosine 5'-[beta, gamma-methylene]triphosphate (AdoPP [CH2]P), a non-hydrolyzable ATP analogue, stimulated the Ca(2+)-release channel, whereas Ap2A and Ap3A had no effect. At a concentration of 0.5 mM, the order of stimulation was AdoPP[CH2]P less than Ap4A less than Ap5A much less than Ap6A. As well as having the highest affinity (0.44 mM for half-maximal stimulation), Ap6A showed an extraordinarily high Hill coefficient of 3.3 (1.9 for AdoPP[CH2]P, 2.1 for Ap5A). The stimulating effect of Ap6A was reversible, yet its dissociation proceeded very slowly. Stimulation of Ca2+ release by Ap6A was counteracted by Mg2+ and ruthenium red. A 2',3'-dialdehyde derivative of Ap6A, which is a chemical probe for amino groups, stimulated irreversibly the Ca(2+)-release channel and modified some high-molecular-mass sarcoplasmic reticulum proteins, possibly including the channel protein. Our data suggest that Ap6A stimulates the Ca2+ channel by binding to the activation site of the channel subunit and simultaneously preventing the spontaneous decay of the Ca2+ channel by keeping together two of the four channel subunits by bridging them with its two adenosine groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号