首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biliary excretion of certain bile acids is mediated by multidrug resistance associated protein 2 (Mrp2) and the bile salt export pump (Bsep). In the present study, the transport properties of several bile acids were characterized in canalicular membrane vesicles (CMVs) isolated from Sprague--Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) whose Mrp2 function is hereditarily defective and in membrane vesicles isolated from Sf9 cells infected with recombinant baculovirus containing cDNAs encoding Mrp2 and Bsep. ATP-dependent uptake of [(3)H]taurochenodeoxycholate sulfate (TCDC-S) (K(m)=8.8 microM) and [(3)H]taurolithocholate sulfate (TLC-S) (K(m)=1.5 microM) was observed in CMVs from SD rats, but not from EHBR. In addition, ATP-dependent uptake of [(3)H]TLC-S (K(m)=3.9 microM) and [(3)H]taurocholate (TC) (K(m)=7.5 microM) was also observed in Mrp2- and Bsep-expressing Sf9 membrane vesicles, respectively. TCDC-S and TLC-S inhibited the ATP-dependent TC uptake into CMVs from SD rats with IC(50) values of 4.6 microM and 1.2 microM, respectively. In contrast, the corresponding values for Sf9 cells expressing Bsep were 59 and 62 microM, respectively, which were similar to those determined in CMVs from EHBR (68 and 33 microM, respectively). By co-expressing Mrp2 with Bsep in Sf9 cells, IC(50) values for membrane vesicles from these cells shifted to values comparable with those in CMVs from SD rats (4.6 and 1.2 microM). Moreover, in membrane vesicles where both Mrp2 and Bsep are co-expressed, preincubation with the sulfated bile acids potentiated their inhibitory effect on Bsep-mediated TC transport. These results can be accounted for by assuming that the sulfated bile acids trans-inhibit the Bsep-mediated transport of TC.  相似文献   

2.
Konings WN  Poelarends GJ 《IUBMB life》2002,53(4-5):213-218
Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural and functional characteristics, this bacterial protein is classified as a member of the P-glycoprotein cluster of the ABC transporter superfamily. LmrA can even substitute for P-glycoprotein in human lung fibroblast cells, suggesting that this type of transporter is conserved from bacteria to man. The functional similarity between bacterial LmrA and human P-glycoprotein is further exemplified by their currently known spectrum of substrates, consisting mainly of hydrophobic cationic compounds. In addition, LmrA was found to confer resistance to eight classes of broad-spectrum antibiotics, and homologs of LmrA have been found in pathogenic bacteria, supporting the clinical and academic value of studying this bacterial protein. Current studies are focused on unraveling the mechanism by which ABC multidrug transporters, such as LmrA, couple the hydrolysis of ATP to the translocation of drugs across the membrane. Recent evidence indicates that LmrA mediates drug transport by an alternating two-site transport mechanism.  相似文献   

3.
4.
5.
Lipopolysaccharide (LPS) induces hepatocellular down-regulation and endocytic retrieval of multidrug resistance protein 2 (Mrp2, Abcc2). Basolateral Mrp isoforms may compensate for the intracellular metabolic changes in cholestasis. Therefore, the effect of LPS on the zonal localization of Mrp2 and Mrp3 and the expression of Mrp3, Mrp4, Mrp5, and Mrp6 mRNA were investigated in rat liver. In normal rat liver Mrp3 was found in pericentral hepatocytes also expressing glutamine synthetase. In LPS-treated rat liver the decrease in Mrp2 protein was most pronounced in pericentral hepatocytes, with only minor down-regulation in periportal hepatocytes. Conversely, induction of Mrp3 was found in pericentral hepatocytes with a low expression of Mrp2. Furthermore, we found a strong induction of Mrp5 mRNA. Likewise, Mrp6 mRNA was up-regulated, however Mrp6 protein expression was not significantly altered. It is concluded that Mrp3 is inversely regulated to Mrp2 in a zonal pattern and may compensate for the LPS-induced loss of Mrp2 in the perivenous area. Induction of pericentral Mrp3 and up-regulation of Mrp5 mRNA may play an important role in the hepatocellular clearance of cholephilic substances and cyclic nucleotides accumulating after LPS treatment.  相似文献   

6.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

7.
8.
9.
10.
Using a luciferase reporter assay in both LMH cells and Caco2 cells we found that certain bile acids including unconjugated deoxycholic and others transactivated the ileal apical sodium-dependent bile acid transporter (ASBT) at concentrations ranging from 20 to 300 microM. Confirming this effect, addition of deoxycholic acid to fresh human ileal biopsies caused an approximate 40% increase in endogenous ASBT mRNA production. Promoter deletion analysis indicated the effect of bile acids was mediated by a response element located in the downstream half of the 5'-UTR, a region known to contain a retinoic acid (RXR/RAR) response element and an activated protein-1 (AP-1) response element. Site-directed mutagenesis of the RAR/RXR response element actually enhanced response to deoxycholic acid. Site-directed mutagenesis of the downstream AP-1 response element reduced activation by deoxycholic acid while deletion of this response element completely eliminated this response. The epidermal growth factor (EGF) receptor inhibitor, AG1478, completely eliminated the response to bile acid while the mitogen-activated protein extracellular signal-regulated kinase cascade (MEK) inhibitor, U0126, partially inhibited the response to bile acid. These studies demonstrate that certain bile acids stimulate ASBT gene expression acting on the down-stream AP-1 response element via the EGF receptor and MEK cascade.  相似文献   

11.
We have characterized the substrate specificity and mechanism of transport of the human multidrug resistance-associated protein 3 (MRP3). A murine fibroblast-like cell line generated from the kidneys of mice that lack Mdr1a/b and Mrp1 was retrovirally transduced with MRP3 cDNA. Stable clones overproducing MRP3 were resistant to the epipodophyllotoxins etoposide and teniposide but not to vincristine, doxorubicin, and cisplatin, drugs suggested to be MRP3 substrates by others. The resistance to etoposide was associated with reduced cellular accumulation and enhanced efflux of this drug and was not affected by depleting cells of glutathione but was inhibited by several common organic anion transport inhibitors. Membrane vesicles from infected insect cells expressing MRP3 mediated ATP-dependent transport of estradiol 17-beta-D-glucuronide, leukotriene C(4), dinitrophenyl S-glutathione but not glutathione itself, and etoposide glucuronide, a major metabolite of etoposide in vivo. The transport of estradiol 17-beta-D-glucuronide by MRP3 was inhibited in a concentration-dependent manner by both etoposide and methotrexate. Even though etoposide glucuronide is an excellent substrate for MRP3, this compound is not involved in the etoposide resistance of our MRP3 cells, as these cells extrude unmodified etoposide rather than etoposide glucuronide.  相似文献   

12.
13.
The multidrug resistance-associated protein 3 (MRP3) is a multispecific anion transporter that is capable of transporting a number of conjugated and unconjugated bile acids. Expression of the MRP3 gene is increased during pathological states associated with elevated bile acid concentrations indicating a role for this transporter in adaptive and homeostatic bile acid metabolism. Analysis of Mrp3 mRNA levels in various mouse tissues with known relevance and/or exposure to bile acids revealed the highest levels of basal expression in the colon followed in order by the liver, duodenum, jejunum, ileum, and kidney. Functional analysis of a murine Mrp3 promoter reporter construct revealed vitamin D receptor (VDR)-dependent activation by 1,25-dihydroxyvitamin D(3) (VD3), 9-cis-retinoic acid (RA), and the cholestatic secondary bile acid, lithocholic acid (LCA). Using a series of deletion constructs combined with sequence analysis, a candidate VDR response element (VDRE) was identified between -1028 and -1014 bp of the Mrp3 promoter. Activation of the Mrp3 promoter in response to VD3, RA, or LCA, as well as binding of VDR/RXR heterodimers, was attenuated substantially by mutation of this VDRE. Treatment of mice with VD3 or LCA demonstrated in vivo modulation of the Mrp3 gene in colon but not in the liver. Reduction of endogenous VDR expression in colon adenocarcinoma MCA-38 cells by siRNA transfection was associated with reduced constitutive and inducible expression of the Mrp3 gene. These data support a regulatory role for the VDR in the protection of colon cells from bile acid toxicity through regulation of the Mrp3 expression.  相似文献   

14.
Using a luciferase reporter assay we found that human serum transactivated the ileal apical sodium-dependent bile acid transporter (ASBT) promoter three to fourfold. Confirming this effect, addition of human serum to both Caco-2 cells and fresh human ileal biopsies caused an approximate 2.0-fold increase in endogenous ASBT mRNA production. Alteration of non-esterified fatty acid (NEFA) content and cortisol content did not affect the transactivation potential of serum. Site-directed mutagenesis of response elements for corticosteroid, peroxisome proliferation-activated alpha (PPARalpha), hepatocyte nuclear factor 1alpha (HNF1alpha), and retinoic acid (RAR/RXR) did not affect transactivation potential of serum. Three putative serum response elements (SRE) were identified on the promoter, but all were determined inactive using site-directed mutagenesis and electrophoretic mobility shift assay. Promoter deletion analysis demonstrated that >80% of the response to serum was located within the last 273 bp of the 5'-UTR, an area containing one of two activate protein 1 (AP-1) response elements. Site-directed mutagenesis of this downstream AP-1 response element reduced the effect of serum on the promoter by about 50% while full deletion of the response element completely eliminated the effect of serum. These studies demonstrate that one or more constituents of human stimulate ASBT gene expression largely via the down-stream AP-1 response element.  相似文献   

15.
Functional expression of multidrug resistance protein 1 in Pichia pastoris.   总被引:2,自引:0,他引:2  
J Cai  R Daoud  E Georges  P Gros 《Biochemistry》2001,40(28):8307-8316
Overexpression of the multidrug resistance-associated protein (MRP1) causes multidrug resistance in cultured cells. MRP1 transports a large number of glutathione, glucuronide, and sulfate-conjugated organic anions by an ATP-dependent efflux mechanism. Six other MRP proteins exist (MRP2-7), and mutations in some of these genes cause major pathological conditions in humans. A detailed characterization of the structure and mechanism of action of these proteins requires an efficient expression system from which large amounts of active protein can be obtained. We report the expression of a recombinant MRP1 in the methylotrophic yeast Pichia pastoris. The protein is expressed in the membrane fraction of these cells, as a stable and underglycosylated 165 kDa peptide. Expression levels are very high, and 30 times superior to those seen in multidrug-resistant HeLa/MRP1 transfectants. MRP1 expressed in P. pastoris binds 8-azido[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion, which can be competed by a molar excess of ADP and ATP. Under hydrolysis conditions (at 37 degrees C), orthovanadate induces trapping of the 8-azido[alpha-(32)P]nucleotide in MRP1, which can be further modulated by known MRP1 ligands. MRP1 is also labeled by a photoactive analogue of rhodamine 123 (IAARh123) in P. pastoris/MRP1 membranes, and this can be competed by known MRP1 ligands. Finally, MRP1-positive membrane vesicles show ATP-dependent uptake of LTC(4). Thus, MRP1 expressed in P. pastoris is active and shows characteristics of MRP1 expressed in mammalian cells, including drug binding, ligand-modulated formation of the MRP1-MgADP-P(i) intermediate (ATPase activity), and ATP-dependent substrate transport. The successful expression of catalytically active and transport-competent MRP1 in P. pastoris should greatly facilitate the efficient production and isolation of the wild type or inactive mutants of MRP1, or of other MRP proteins for structural and functional characterization.  相似文献   

16.
beta-Klotho, a newly described membrane protein, regulates bile acid synthesis. Fibroblast growth factor-15 (FGF-15) and FGF receptor-4 (FGFR4) knockout mice share a similar phenotype with beta-Klotho-deficient mice. FGF-15 secretion by the intestine regulates hepatic bile acid biosynthesis. The effects of beta-Klotho and FGF-15 on the ileal apical sodium bile transporter (ASBT) are unknown. beta-Klotho siRNA treatment of the mouse colon cancer cell line, CT-26, and the human intrahepatic biliary epithelial cells (HIBEC) resulted in upregulation of endogenous ASBT expression that was associated with reduced expression of the farnesoid X receptor (FXR) and the short heterodimer partner (SHP). Silencing beta-Klotho activated the ASBT promoter in CT-26, Mz-ChA-1 (human cholangiocarcinoma), and HIBEC cells. Site-directed mutagenesis of liver receptor homolog-1 (mouse) or retinoic acid receptor/retinoid X receptor (RAR/RXR) (human) cis-elements attenuated the basal activity of the ASBT promoter and abrogated its response to beta-Klotho silencing. siSHP, siFXR, or dominant-negative FXR treatment also eliminated the beta-Klotho response. FGF-15 secretion into cell culture media by CT-26 cells was diminished after siFGF-15 or sibeta-Klotho treatment and enhanced by chenodeoxycholic acid. Exogenous FGF-19 repressed ASBT protein expression in mouse ileum, gallbladder, and in HIBEC and repressed ASBT promoter activity in Caco-2, HIBEC, and Mz-ChA-1 cells. Promoter repression was dependent on the expression of FGFR4. These results indicate that both beta-Klotho and FGF-15/19 repress ASBT in enterocytes and cholangiocytes. These novel signaling pathways need to be considered in analyzing bile acid homeostasis.  相似文献   

17.
18.
The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. We expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [3H]-azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents (e.g., daunomycin greater than verapamil greater than vinblastine approximately vincristine) compete with the [3H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart.  相似文献   

19.
Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.  相似文献   

20.
Streptococcus agalactiae (group B streptococcus [GBS]) causes neonatal sepsis, pneumonia, and meningitis, as well as infections of the bovine udder. The S. agalactiae hemolysin is regarded as an important virulence factor, and hemolysin expression is dependent on the cyl gene cluster. cylA and cylB encode the ATP binding and transmembrane domains of a typical ATP binding cassette (ABC) transporter. The deduced proteins contain the signature sequence of a multidrug resistance (MDR) transporter, and mutation of the genes results in a nonhemolytic and nonpigmented phenotype. To further elucidate the function of the putative transporter, nonpolar deletion mutants of cylA were constructed. These mutants are nonhemolytic and can be complemented by the transporter genes. Wild-type strain and nonhemolytic cylA and cylK deletion mutants were exposed to known substrates of MDR transporters. Mutation of cylA significantly impaired growth in the presence of daunorubicin, doxorubicin, and rhodamine 6G and resulted in a decreased export of doxorubicin from the cells. The mutation of cylK, a gene of unknown function located downstream from cylA, caused a loss of hemolysis but had no effect on the transport of MDR substrates. Furthermore, the hemolytic activity of the wild-type strain was inhibited by reserpine in a dose-dependent manner. We conclude that CylAB closely resembles an ABC-type MDR transporter and propose that the GBS hemolysin molecule represents a natural substrate of the transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号