首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The phylogenetic relationships between the tribes Inuleae sensu stricto and Plucheeae are investigated by analysis of sequence data from the cpDNA gene ndhF. The delimitation between the two tribes is elucidated, and the systematic positions of a number of genera associated with these groups, i.e. genera with either aberrant morphological characters or a debated systematic position, are clarified. Together, the Inuleae and Plucheeae form a monophyletic group in which the majority of genera of Inuleae s.str. form one clade, and all the taxa from the Plucheeae together with the genera Antiphiona, Calostephane, Geigeria, Ondetia, Pechuel-loeschea, Pegolettia, and Iphionopsis from Inuleae s.str. form another. Members of the Plucheeae are nested with genera of the Inuleae s.str., and support for the Plucheeae clade is weak. Consequently, the latter cannot be maintained and the two groups are treated as one tribe, Inuleae, with the two subtribes Inulinae and Plucheinae. The genera Asteriscus, Chrysophthalmum, Inula, Laggera, Pentanema, Pluchea, and Pulicaria are demonstrated to be non-monophyletic. Cratystylis and Iphionopsis are found to belong to the same clade as the taxa of the former Plucheeae. Caesulia is shown to be a close relative of Duhaldea and Blumea of the Inuleae-Inulinae. The genera Callilepis and Zoutpansbergia belong to the major clade of the family that includes the tribes Heliantheae sensu lato and Inuleae (incl. Plucheeae), but their exact position remains unresolved. The genus Gymnarrhena is not part of the Inuleae, but is either part of the unresolved basal complex of the paraphyletic Cichorioideae, or sister to the entire Asteroideae.  相似文献   

2.
 The tribal affinities of Cratystylis and Haegiela were assessed using three chloroplast DNA sequences, the trnL/F spacer, the trnL intron and the matK coding region. The outgroup was represented by two species of the subfamily Barnadesioideae, whereas one to seven genera (45 species including Cratystylis and Haegiela) of the tribes of the Asteroideae [Anthemideae (6 genera), Astereae (7), Calenduleae (2), Gnaphalieae (7), Heliantheae s.l. (5), Inuleae s.str. (3), Plucheeae (3), Senecioneae (4)] and Cichorioideae, [Arctotideae (1), Cardueae (2), Lactuceae (2), Liabeae (1), Mutisieae (1) and Vernonieae (1)] comprise the ingroup. Phylogenetic analysis indicates that Cratystylis has strong support as a member of the tribe Plucheeae, whereas Haegiela is a member of Gnaphalieae. At some point in their taxonomic history, both genera have been placed in these tribes and there are good morphological and chemical characters that justify these placements. The monotypic Haegiela was once included in Epaltes (Plucheeae) and this study has confirmed the need for the separation of the two genera. The genus Cratystylis appears to be monophyletic. Received August 26, 2002; accepted September 19, 2002 Published online: February 7, 2003  相似文献   

3.
The tribe Inuleae (Asteraceae) has 10 species endemic to the Macaronesian islands, including the three endemic genera Allagopappus, Schizogyne, and Vierea. Phylogenetic analyses of DNA sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA of 47 taxa were performed using all Macaronesian endemics and representative species from 21 of the 36 genera of the Inuleae. The resulting ITS phylogeny reveals that Allagopappus is sister to a large clade that contains all genera with a predominantly Mediterranean distribution. This finding suggests that Allagopappus may represent an ancient lineage that found refuge in the Canary Islands following the major climatic and/or geologic changes in the Mediterranean basin after the Tertiary. The Macaronesian endemic genus Schizogyne is sister to Limbarda from the Mediterranean. The third Macaronesian endemic genus, Vierea, is sister to Perralderia, which is restricted to Morocco and Algeria. Pulicaria canariensis is sister to P. mauritanica, a species endemic to Morocco and Algeria. In contrast, P. diffusa from the Cape Verde Islands is sister to a broadly distributed species, P. crispa, that occurs from North Africa to the Arabian peninsula. Based on the ITS data, the genera Blumea, Inula, and Pulicaria are not monophyletic. The ITS trees suggested that Blumea mollis belongs to the tribe Plucheeae, a finding that is congruent with recent morphological evidence. A possible southern African origin for the core of the Laurasian taxa of the Inuleae is also suggested.  相似文献   

4.
Comprehensive taxonomic sampling can vastly improve the accuracy of phylogenetic reconstruction. Here, we present the most inclusive phylogenetic analysis of Arvicolinae (Mammalia, Rodentia) to date, combining all published cytochrome  b gene sequences of greater than 1097 bp and new sequences from two monotypic genera. Overall, the phylogenetic relationships between 69 species of voles and lemmings, representing 18 genera and 10 tribes, were studied. By applying powerful modern approaches to phylogenetic reconstruction, such as maximum likelihood and Bayesian analysis, we provide new information on the early pulse of evolution within the Arvicolinae. While the position of two highly divergent lineages, Phenacomys and Ondatra , could not be resolved, the tribe Lemmini, appeared as the most basal group of voles. The collared lemmings (Dicrostonychini) grouped together with all of the remaining tribes. The two previously unstudied monotypic genera Dinaromys and Prometheomys form a moderately well-supported monophyletic clade, possibly a sister group to Ellobius (Ellobiusini). Furthermore, with one exception, all tribes ( sensu Musser & Carleton, 2005) proved to be monophyletic and can thus be regarded as meaningful evolutionary entities. Only the tribe Arvicolini emerged as paraphyletic in both analyses because of the unresolved phylogenetic position of Arvicola terrestris . Steppe voles of the genus Lagurus were solidly supported as a sister group to the Microtus and allies clade.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 825–835.  相似文献   

5.
The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.  相似文献   

6.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

7.
To better understand relationships within the Asteroideae, the pollen morphology and exine structure of 10 genera and 15 species of Gnaphaliinae were investigated using light, scanning electron, and transmission electron microscopy. All taxa have a Gnaphalioid pattern of exine with an evidently rough foot layer. The tectal complex consists of three main layers that differ in morphology and thickness: a tectum, a median columellar layer, and an internal interlaced sub-columellar layer. The apertural system consists of an ectoaperture, a mesoaperture, and an endoaperture, which intersect, respectively, the tectal complex, the foot layer and the upper part of the endexine, and the inner part of the endexine. On the basis of pollen characteristics, especially those of the spines, all the species examined may be gathered into two groups, one including Helichrysum foetidum, H. italicum, Plecostachys serpyllifolia, and Pseudognaphalium luteo-album and the other including the other 11 species of Gnaphaliinae now investigated. In addition, because Gnaphalieae has been proposed as sister group to several tribes and clades of Asteroideae, a comparison was made between exine pattern in the Gnaphalieae and that in its putatively related tribes. On the basis of previous phylogenetic studies and our present pollen data we suggest that either Astereae, Astereae-Anthemideae clade, or Heliantheae s.l.-Anthemideae clade are the best candidates for the sister taxon/sister group of Gnaphalieae.  相似文献   

8.
The Gnaphalieae are a group of sunflowers that have their greatest diversity in South America, Southern Africa, and Australia. The objective of this study was to reconstruct a phylogeny of the South African Gnaphalieae using sequence data from two noncoding chloroplast DNA sequences, the trnL intron and trnL/trnF intergenic spacer. Included in this investigation are the genera of the Gnaphalieae from the African basal groups, members of the subtribes Cassiniinae, Gnaphaliinae, and Relhaniinae, and African representatives from the large Old World genus Helichrysum. Results indicate that two Gnaphaloid genera, Printzia and Callilepis, should be excluded from the Gnaphalieae. In most trees the Relhaniinae s.s. (sensu stricto) and some of the basal taxa comprise a clade that is sister to the remainder of the tribe Gnaphalieae. The Relhaniinae, which are restricted to Africa, are not a monophyletic group as presently circumscribed, nor are the South African members of Helichrysum, the Cassiniinae and Gnaphaliinae. There is general agreement between our molecular analysis and that of morphology, particularly in the terminal branches of the trees.  相似文献   

9.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

10.
The carabid subfamily Harpalinae contains most of the species of carabid beetles. This subfamily, with over 19,000 species, radiated in the Cretaceous to yield a large clade that is diverse in morphological form and ecological habit. While there are several morphological, cytological, and chemical characters that unite most harpalines, the placement of some tribes within the subfamily remains controversial, as does the sister group relationships to this large group. In this study, DNA sequences from the 28S rDNA gene and the wingless nuclear protein-coding gene were collected from 52 carabid genera representing 31 harpaline tribes in addition to more than 21 carabid outgroup taxa to reconstruct the phylogeny of this group. Molecular sequence data from these genes, along with additional data from the 18S rDNA gene, were analyzed with a variety of phylogenetic analysis methods, separately for each gene and in a combined data approach. Results indicated that the subfamily Harpalinae is monophyletic with the enigmatic tribes of Morionini, Peleciini, and Pseudomorphini included within it. Brachinine bombardier beetles are closely related to Harpalinae as they form the sister group to harpalines or, in some analyses, are included within it or with austral psydrines. The austral psydrines are the sister group to Harpalinae+Brachinini clade in most analyses and austral psydrines+Brachinini+Harpalinae clade is strongly supported.  相似文献   

11.
Sequences of the chloroplast trnL-F region and 3(') end ndhF gene were used to elucidate phylogenetic relationships and the delimitation of families within Dipsacales s.l. Parsimony analyses of individual and combined data were conducted using maximum parsimony method. The most parsimonious tree based on combined trnL-F and 3(') end ndhF data set recognizes seven major clades of Dipsacales s.l. with the following relationships: Apiales (Adoxaceae ((Diervillaceae, Caprifoliaceae s.str.) (Linnaeaceae (Morinaceae (Dipsacaceae, Valerianaceae))))). Both Sambucus and Viburnum have close relationships with Adoxaceae, supporting their inclusion in this family. Caprifoliaceae s.l. (excluding Sambucus and Viburnum) is polyphyletic, and comprises three clades or families, i.e., Linnaeaceae (Abelia, Dipelta, Kolkwitzia, and Linnaea), Diervillaceae (Weigela and Diervilla) and Caprifoliaceae s.str. (Heptacodium, Leycesteria, Lonicera, Symphoricarpos, and Triosteum). This study focuses on the systematic position of Heptacodium, Triplostegia, and Morinaceae; and suggests that Heptacodium is closely related to the other Caprifoliaceae s.str.; Triplostegia is a sister to Dipsacaceae; Morinaceae, which has an affinity with Dipsacaceae, is possibly a sister group with Dipsacaceae-Valerianaceae clade. Our results are highly congruent with those of and.  相似文献   

12.
Cacti are a large and diverse group of stem succulents predominantly occurring in warm and arid North and South America. Chloroplast DNA sequences of the trnK intron, including the matK gene, were sequenced for 70 ingroup taxa and two outgroups from the Portulacaceae. In order to improve resolution in three major groups of Cactoideae, trnL-trnF sequences from members of these clades were added to a combined analysis. The three exemplars of Pereskia did not form a monophyletic group but a basal grade. The well-supported subfamilies Cactoideae and Opuntioideae and the genus Maihuenia formed a weakly supported clade sister to Pereskia. The parsimony analysis supported a sister group relationship of Maihuenia and Opuntioideae, although the likelihood analysis did not. Blossfeldia, a monotypic genus of morphologically modified and ecologically specialized cacti, was identified as the sister group to all other Cactoideae. The tribe Cacteae was found to be sister to a largely unresolved clade comprising the genera Calymmanthium, Copiapoa, and Frailea, as well as two large and well-supported clades. Browningia sensu stricto (excluding Castellanosia), the two tribes Cereeae and Trichocereeae, and parts of the tribes Notocacteae and Rhipsalideae formed one clade. The distribution of this group is largely restricted to South America. The other clade consists of the columnar cacti of Notocacteae, various genera of Browningieae, Echinocereeae, and Leptocereeae, the tribes Hylocereeae and Pachycereeae, and Pfeiffera. A large portion of this latter group occurs in Central and North America and the Caribbean.  相似文献   

13.
The family Brassicaceae comprises 3710 species in 338 genera, 25 recently delimited tribes, and three major lineages based on phylogenetic results from the chloroplast gene ndhF. To assess the credibility of the lineages and newly delimited tribes, we sequenced an approximately 1.8-kb region of the nuclear phytochrome A (PHYA) gene for taxa previously sampled for the chloroplast gene ndhF. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the approximately unbiased (AU) test to compare phylogenetic results from PHYA with findings from ndhF. We also combined ndhF and PHYA data and used a Bayesian mixed model approach to infer phylogeny. PHYA and combined analyses recovered the same three large lineages as those recovered in ndhF trees, increasing confidence in these lineages. The combined tree confirms the monophyly of most of the recently delimited tribes (only Alysseae, Anchonieae, and Descurainieae are not monophyletic), while 13 of the 23 sampled tribes are monophyletic in PHYA trees. In addition to phylogenetic results, we documented the trichome branching morphology of species across the phylogeny and explored the evolution of different trichome morphologies using the AU test. Our results indicate that dendritic, medifixed, and stellate trichomes likely evolved independently several times in the Brassicaceae.  相似文献   

14.
TRIBAL INTERRELATIONSHIPS OF THE ASTERACEAE   总被引:3,自引:0,他引:3  
Abstract— A cladistic analysis involving 27 tribes and subtribes of Asteraceae and 81 characters is presented. The terminal taxa are mainly those of present tribal classification, though some apparently poly- and paraphyletic tribes, notably the Mutisieae and the Inuleae, have been represented by sub-tribal taxa. Characters are assembled from all available sources. Corolla types, styles and stamens have provided many characters. The Lobeliaceae are used as an outgroup and are considered as the most probable sister group of the Asteraceae. There is a basal dichotomy in the family, the Mutisieae-Barnadesiinae being the monophyletic sister group of the remaining major, also monophyletic part of the family. The recent family division into two subfamilies about equal in size, the Cichorioideae and the Asteroideae, neither represents a basal dichotomy nor a sister group relationship within the Asteraceae. The Asteroideae are monophyletic and have their sister group within the paraphyletic Cichorioideae. Interrelationships among the cichorioid tribes are still unclear. The Lactuceae, Eremothamneae, Vernonieae and Liabeae may be one monophyletic group, and the Arctoteae, Carlineae, Echinopsideae and Cardueae another. The Mutisieae are a paraphyletic grade at the base of the family. Within the subfamily Asteroideae tribal interrelationships are also rather unclear. The Anthemideae and the Heliantheae sensu lato (including the Helenieae, Tageteae, Coreopsideae and all helenioid/helianthoid representatives sometimes placed in the Senecioneae) may be sister groups. The Heliantheae appear to be monophyletic and there is little support for the hypothesis that other tribes are derived from or have their sister group within the Heliantheae. The Astereae and the Eupatorieae may be sister groups, though a closer relationship between the Eupatorieae and the Heliantheae is possible. The Inuleae are a paraphyletic grade group at the base of the subfamily Asteroideae in the same way as the Mutiseae are a grade group at the base of the family.  相似文献   

15.
The members of tribe Microlicieae in the flowering plant family Melastomataceae are nearly all endemic to the cerrado biome of Brazil. Traditional classifications of the Melastomataceae have attributed between 15 and 17 genera to the Microlicieae, but subsequent revisions have circumscribed the tribe more narrowly. The monophyly and intergeneric relationships of the Microlicieae were evaluated through phylogenetic analyses with molecular and morphological data sets. Incorporation of DNA sequences from the intron of the chloroplast gene rpl16 into a previously generated family-wide data set yielded a clade comprising Chaetostoma, Lavoisiera, Microlicia, Rhynchanthera, Stenodon, and Trembleya ("core Microlicieae"), with Rhynchanthera as the first-diverging lineage. The other four genera of Microlicieae sampled are placed in other clades: Eriocnema with Miconieae; Siphanthera with Aciotis, Nepsera, and Acisanthera of Melastomeae; Castratella as sister to Monochaetum of Melastomeae; and Cambessedesia as part of an unresolved polytomy in a large clade that includes most Melastomataceae. Analyses of the chloroplast genes rbcL and ndhF that included three core genera produced similar results, as did the combined analysis of all three data sets. Combined parsimony analyses of DNA sequences from rpl16 and the nuclear ribosomal intercistronic transcribed spacer (ITS) region of 22 species of core Microlicieae yielded generally low internal support values. Lavoisiera, recently redefined on the basis of several morphological characters, was strongly supported as monophyletic. A morphological phylogenetic analysis of the Microlicieae based on 10 parsimony-informative characters recovered a monophyletic core Microlicieae but provided no further resolution among genera. Penalized likelihood analysis with two calibration time windows produced an age estimate of 3.7 million years for the time of initial divergence of strictly Brazilian core Microlicieae. This date is in general agreement with the estimated age of the most active stage of development of cerrado vegetation and implies an adaptive shift from hydric to seasonally dry habitats during the early evolution of this group.  相似文献   

16.
通过对广义蓼属及近缘属共32个代表种内转录间隔区ITS序列的分子系统学分析,尝试研究备受争议的广义蓼属及近缘属的物种族、属、组级的划分问题,结果显示,广义蓼属在系统发育树上并不能形成一个单系类群,这些物种共聚为3大支,分别对应春蓼族、蓼族及荞麦族,其中荞麦属与翅果蓼属形成了一支独立于春蓼族及蓼族之外的类群。在春蓼族中,冰岛蓼属与分叉蓼组形成一个单系类群。  相似文献   

17.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

18.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

19.
A molecular systematic study of Scrophulariaceae sensu lato using DNA sequences of three plastid genes (rbcL, ndhF, and rps2) revealed at least five distinct monophyletic groups. Thirty-nine genera representing 24 tribes of the Scrophulariaceae s.l. (sensu lato) were analyzed along with representatives of 15 other families of Lamiales. The Scrophulariaceae s.s. (sensu stricto) include part or all of tribes Aptosimeae, Hemimerideae, Leucophylleae, Manuleae, Selagineae, and Verbasceae (= Scrophularieae) and the conventional families Buddlejaceae and Myoporaceae. Veronicaceae includes all or part of tribes Angelonieae, Antirrhineae, Cheloneae, Digitaleae, and Gratioleae and the conventional families Callitrichaceae, Globulariaceae, Hippuridaceae, and Plantaginaceae. The Orobanchaceae include tribes Buchnereae, Rhinantheae, and the conventional Orobanchaceae. All sampled members of Orobanchaceae are parasitic, except Lindenbergia, which is sister to the rest of the family. Family Calceolariaceae Olmstead is newly erected herein to recognize the phylogenetic distinctiveness of tribe Calceolarieae. The Calceolariaceae are close to the base of the Lamiales. The Stilbaceae are expanded by the inclusion of Halleria. Mimulus does not belong in any of these five groups.  相似文献   

20.
Most of the estimated 70–80 species of New Zealand Gnaphalieae are endemic. Those of Anaphalioides , Ewartia , Helichrysum , Leucogenes , Rachelia and Raoulia belong to a putatively monophyletic group which is supported by analysis of nuclear ITS DNA sequences and is virtually confined to New Zealand. All species of Craspedia , Euchiton , Ozothamnus and Pseudognaphalium are excluded from this group. A phylogenetic analysis of 42 species of Gnaphalieae, using 57 morphological, anatomical and palynological characters, was conducted to test the monophyly of this group and to seek evidence of generic relationships. The analysis does not resolve basal relationships among the Gnaphalieae studied here. The putative monophyletic New Zealand group is not retrieved. Monophyly is supported for each of Euchiton , Leucogenes , the whipcord species of Helichrysum , the pulvinate species of Raoulia , and Raoulia subg. Raoulia (excluding the aberrant R. cinerea ), but not for Anaphalioides or Raoulia s.l. There are these two distinct groups in Raoulia s.l. but also a substantial number of isolated species. The sole New Zealand species of Ewartia is not a sister species to Australian Ewartia . The Australian species Ewartia planchonii is the sister species to Euchiton rather than to the other Australian species of Ewartia .  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 141 , 183–203.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号