首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the guanosine diphosphate esters of 4-deoxy-4-fluoro-D-mannose (GDP-4FMan) and 4-deoxy-D-mannose (GDP-4dMan) on reactions of the dolichol pathway in chick-embryo cell microsomal membranes were investigated by studies with chick-embryo cell microsomal membranes in vitro and in baby-hamster kidney (BHK) cells in vivo. Each nucleotide sugar analogue inhibited lipid-linked oligosaccharide biosynthesis in a concentration-dependent manner. GDP-4FMan blocked in vitro the addition of mannose to Dol-PP-(GlcNAc)2Man from GDP-Man (where Dol represents dolichol), but did not interfere with the formation of Dol-P-Man, Dol-P-Glc and Dol-PP-(GlcNAc)2. Although GDP-4FMan and Dol-P-4FMan were identified as metabolites of 4FMan in BHK cells labelled with [1-14C]4FMan, GDP-4FMan was a very poor substrate for GDP-Man:Dol-P mannosyltransferase and Dol-P-4FMan could only be synthesized in vitro if the chick-embryo cell membranes were primed with Dol-P. It therefore appears that the inhibition of lipid-linked oligosaccharide formation in BHK cells treated with 4FMan [Grier & Rasmussen (1984) J. Biol. Chem. 259, 1027-1030] is due primarily to a blockage in the formation of Dol-PP-(GlcNAc)2Man2 by GDP-4FMan. In contrast, GDP-4dMan was a substrate for those mannosyltransferases that catalyse the transfer of the first five mannose residues to Dol-PP-(GlcNAc)2. In addition, GDP-4dMan was a substrate for GDP-Man:Dol-P mannosyltransferase, which catalysed the formation of Dol-P-4dMan. As a consequence of this, the formation of Dol-P-Man, Dol-P-Glc and Dol-PP-(GlcNAc)2 may be inhibited through competition for Dol-P. In BHK cells treated with 10 mM-4dMan, Dol-PP-(GlcNAc)2Man9 was the major lipid-linked oligosaccharide detected. Nearly normal extents of protein glycosylation were observed, but very little processing to complex oligosaccharides occurred, and the high-mannose structures were smaller than in untreated cells.  相似文献   

2.
The UDP-derivative of deoxyglucose (UDP-deoxyglucose) inhibits the formation of dolichyl monophosphate glucose (Dol-P-glucose) in chick embryo cell membranes but has no effect on Dol-PP di-N-acetylchitobiose [Dol-PP-(GlcNAc)2]formation. The effects of UDP-deoxyglucose are not reversed by Dol-P, nor is Dol-P-deoxyglucose formed from this derivative. GDP-deoxyglucose inhibits formation of both Dol-P-glucose and Dol-PP-(GlcNAc)2. It is shown that GDP-deoxyglucose inhibits in these cases by competition with physiological nucleotide sugars for Dol-P. GDP-deoxyglucose and UDP-deoxyglucose also prevent the attachment of the peripheral glucose residues in Dol-PP-(GlcNAc)2-MansyGlc3, the immediate precursor of protein-bound oligosaccharides. The inhibition by GDP-deoxyglucose is only in part reversed by Dol-P, probably because deoxyglucose is incorporated into the lipid-linked oligosaccharide instead of glucose.  相似文献   

3.
Crude membrane fractions from Volvox carteri in the presence of detergent and metal complexing agent catalyze the transfer of glucose from dolichyl phosphate glucose to branched dolichyl diphosphate chitobiosyl pentamannoside Dol-PP-(GlcNAc)2-(Man)5, a known intermediate of the lipid-mediated pathway of N-glycosylation of proteins, resulting in the formation of Dol-PP-(GlcNAc)2-(Man)5-(Glc)1. Under the various conditions tested, neither Dol-P-Man nor other known mannosyl donors of the nucleoside-activated or lipid-activated type can serve as donor molecules for the elongation of the lipid-linked heptasaccharide. On the other hand, calf liver microsomes in similar experiments mannosylated the heptasaccharide further with Dol-P-Man up to a nonamannoside, Dol-PP-(GlcNAc)2-(Man)9. A direct glucosylation of the acceptor, however, with Dol-P-Glc failed in this system. The (GlcNAc)2-(Man)5-(Glc)1, obtained after mild acid hydrolysis of the above glycolipid is not significantly split by an unspecific alpha-glucosidase from yeast. However, Volvox microsomes liberated most of the glucose indicating a specific glucosidase in the membranes of the alga. This enzyme does not act on (GlcNAc)2-(Man)9-(Glc)1, the usual protein-linked carbohydrate intermediate of trimming processes of N-glycosidic glycoproteins. The data on glycolipid formation let us postulate that in Volvox the normal N-glycosylation pathway differs from that found in higher plants and animals either by a lack of evolution or by mutation in the genes coding for the mannosyl transferases involved.  相似文献   

4.
2-Deoxy-2-fluoro-D-mannose (2FMan), an antiviral mannose analogue, inhibited the dolichol cycle of protein glycosylation. To specifically inhibit oligosaccharide-lipid synthesis, and not (viral) protein synthesis in influenza virus infected cells, the addition of guanosine to the 2FMan-treated cells was required. Under these conditions an early step in the assembly of the oligosaccharide-lipid was inhibited, and as a consequence, the glycosylation of proteins was strongly inhibited. Low-molecular-weight, lipid-linked oligosaccharides accumulated in cells treated with 2FMan plus guanosine, although dolichol phosphate (Dol-P) and GDP-Man were still present in the treated cells, and membranes from these cells were not defective in assembly of lipid-linked oligosaccharides. Thus, the presence of a soluble inhibitor of oligosaccharide-lipid assembly in these cells was postulated, and GDP-2FMan and UDP-2FMan, two metabolites found in 2FMan-treated cells, were synthesized and used to study in cell-free systems the inhibition of oligosaccharide-lipid assembly. GDP-2FMan inhibited the synthesis of Man(GlcNAc)2-PP-Dol from (GlcNAc)2-PP-Dol and GDP-Man, and in addition, it caused a trapping of Dol-P as 2FMan-P-Dol, whereas UDP-2FMan only inhibited Glc-P-Dol synthesis. However, it is probable that neither trapping of Dol-P nor inhibition of Glc-P-Dol synthesis by UDP-2FMan contributed to inhibition of protein glycosylation in cells treated with 2FMan. Incorporation of 2FMan from GDP-2FMan or UDP-2FMan into dolichol diphosphate linked oligosaccharides and interference of GDP-2FMan with the latter steps of assembly of the dolichol diphosphate linked oligosaccharide could not be shown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis   总被引:11,自引:0,他引:11  
M D Snider  O C Rogers 《Cell》1984,36(3):753-761
The transport of sugar residues into the endoplasmic reticulum (ER) during glycoprotein synthesis was studied by examining the transmembrane orientations of the oligosaccharide-lipid precursors of asparagine-linked oligosaccharides. Using the lectin concanavalin A, the lipid-linked oligosaccharides Man3-5GlcNAc2 were found on the cytoplasmic side of ER-derived vesicles in vitro while lipid-linked Man6-9GlcNAc2 and Glc1-3Man9GlcNAc2 were found facing the lumen. These results suggest that Man5GlcNAc2-lipid is synthesized on the cytoplasmic side of the ER membrane and then translocated to the luminal side. Glc3Man9GlcNAc2-lipid is then completed on the luminal side where it serves as the donor in peptide glycosylation. Translocation of Man5GlcNAc2-lipid offers a mechanism for the export of sugar residues from the cytoplasm during glycoprotein synthesis. This translocation may be the reason for the participation of lipid-linked mono- and oligosaccharides in glycoprotein synthesis.  相似文献   

7.
Protein glycosylation mutants in the mouse mammary carcinoma cell line FM3A were selected for ability to withstand exposure to [2-3H]mannose at 39 degrees C. G258 , one of the mutant cells isolated, has been characterized. G258 cells were temperature-sensitive for cell growth. Moreover, G258 cells showed temperature sensitivity for [3H]mannose incorporation into the TCA-insoluble fraction. To study the biochemical basis of the defect in glycoprotein biosynthesis, the formation of lipid-linked saccharides was examined. The results showed that the formation of lipid-linked oligosaccharides was severely inhibited in G258 cells at 39 degrees C. At 33 degrees C, G258 cells synthesized Glc3Man9GlcNAc2-PP-Dol, the fully assembled lipid-linked oligosaccharides, but at 39 degrees C, G258 cells were able to synthesize merely the smaller lipid-linked oligosaccharides (approximately up to Man3GlcNAc2 -PP-Dol), but were unable to synthesize the larger lipid-linked oligosaccharides.  相似文献   

8.
The lipid-linked oligosaccharides synthesized in the presence of the alpha-glucosidase inhibitors, 1-deoxynojirimycin (DJN) and N-methyl-1-deoxynojirimycin (MDJN), were compared in IEC-6 intestinal epithelial cells in culture. HPLC analysis of the oligosaccharides obtained before and after exhaustive jack bean alpha-mannosidase digestion indicates that control and MDJN-treated cells synthesize similar amounts of Glc3Man9GlcNAc2-PP-dolichol. In contrast, the formation of this compound is greatly reduced in DJN-treated cells, the major lipid-linked oligosaccharide found being Man9GlcNAc2-PP-dolichol. The decreased availability of the preferred donor for protein glycosylation may account for the impaired glycosylation and secretion of certain glycoproteins in the presence of DJN.  相似文献   

9.
The effects of the glycosylation inhibitor 2-deoxy-2-fluoro-D-glucose on the formation of the lipid-linked oligosaccharides and monosaccharides that are involved in protein glycosylation were investigated. In chick embryo cells treated with fluoroglucose the formation of lipid-linked oligosaccharides cannot go to completion and oligosaccharides with decreased amounts of glucose and mannose can be detected. These oligosaccharides are probably biosynthetic intermediates and serve as acceptors of sugar residues while reversing fluoroglucose-inhibition by the addition of mannose and glucose to the culture medium. In contrast to deoxyglucose, fluoroglucose was not incorporated into lipid-linked oligosaccharides. Fluoroglucose inhibits the formation in vivo of dolichyl phosphate glucose and dolichyl phosphate mannose, but not the transfer of those sugar residues from the lipid monophosphate derivative to the lipid-linked oligosaccharides. The pool size of UDP-glucose, but not of GDP-mannose and UDP-N-acetylglucosamine, was decreased. Also, the formation of lipid-linked N-acetylglucosamine was not affected by fluoroglucose. Fluoroglucose was applied to deplete cellular membranes of endogenous lipid-linked mannose and glucose, and can possibly be used to discern different pathways of glycosylation.  相似文献   

10.
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis.  相似文献   

11.
Madin-Darby canine kidney (MDCK) cells normally form lipid-linked oligosaccharides having mostly the Glc3Man9GlcNAc2 oligosaccharide. However, when MDCK cells are incubated in 1 to 10 mM mannosamine and labeled with [2-3H]mannose, the major oligosaccharides associated with the dolichol were Man5GlcNAc2 and Man6GlcNAc2 structures. Since both of these oligosaccharides were susceptible to digestion by endo-beta-N-acetylglucosaminidase H, the Man5GlcNAc2 must be different in structure than the Man5GlcNAc2 usually found as a biosynthetic intermediate in the lipid-linked oligosaccharides. Methylation analysis also indicated that this Man5GlcNAc2 contained 1----3 linked mannose residues. Since pulse chase studies indicated that the lesion was in biosynthesis, it appears that mannosamine inhibits the in vivo formation of lipid-linked oligosaccharides perhaps by inhibiting the alpha-1,2-mannosyl transferases. Although the lipid-linked oligosaccharides produced in the presence of mannosamine were smaller in size than those of control cells and did not contain glucose, the oligosaccharides were still transferred in vivo to protein. Furthermore, the oligosaccharide portions of the glycoproteins were still processed as shown by the fact that the glycopeptides were of the complex and hybrid types and were labeled with [3H]mannose or [3H]galactose. In contrast, control cells produced complex and high-mannose structures but no hybrid oligosaccharides were detected. The inhibition by mannosamine could be overcome by adding high concentrations of glucose to the medium.  相似文献   

12.
Membrane preparations from developing cotyledons of red kidney bean (Phaseolus vulgaris L.) transferred radioactive mannose from GDP-mannose (U-[14C]mannose) to endogenous acceptor proteins. The transfer was inhibited by the antibiotic tunicamycin, suggesting the involvement of lipidoligosaccharide intermediates typical of the pathway for glycosylation of asparagine residues. This was supported by the similarity of the linkage types of radioactive mannose in lipid-oligosaccharide and glycoprotein products; both contained labeled 2-linked mannose, 3,6-linked and terminal mannose typical of glycoprotein “core” oligosaccharides. As expected for “core” glycosylation, the transfer of labeled N-acetylglucosamine (GlcNAc) from UDP-GlcNAc (6-[3H]GLcNAc) to 4-linkage in endogenous glycoproteins could also be demonstrated. However, most of the radioactive GlcNAc was incorporated into terminal linkage, in a reaction insensitive to tunicamycin. The proteins receiving “core” oligosaccharide in vitro were heterogeneous in size, in contrast to those receiving most of the GlcNAc (which chiefly comprised the seed reserve-proteins phaseolin and phytohemagglutinin). It is suggested that following “core” glycosylation, single GlcNAc residues are attached terminally to the oligosaccharides of these seed proteins, without the involvement of lipid-linked intermediates. Phaseolin from mature seeds does not possess a significant amount of terminal GlcNAc and so it is possible that these residues are subsequently removed in a processing event.  相似文献   

13.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

14.
We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.  相似文献   

15.
The potential role of degradative mechanisms in controlling the level of the dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 required for protein N-glycosylation has been explored in thyroid slices and endoplasmic reticulum (ER) vesicles, focusing on cleavage of the oligosaccharide from its lipid attachment and on the enzymatic removal of peripheral monosaccharide residues. Vesicle incubations demonstrated a substantial release of free Glc3Man9GlcNAc2 (at 30 min approximately 35% of that transferred to protein) which was inhibited in the presence of exogenous peptide acceptor and was sensitive to disruption of membrane integrity by detergent. In thyroid slices glucosylated oligosaccharides terminating in the di-N-acetylchitobiose sequence were also noted and these continued to be formed even during inhibition by puromycin of both protein synthesis and the attendant N-glycosylation. These observations indicated that the oligosaccharide originated from the lipid donor and suggested, together with previously reported similarities in substrate specificity and cofactor requirements, that the oligosaccharyltransferase can carry out in vivo both the hydrolytic and transfer functions. In addition to the release of the intact Glc3Man9GlcNAc2, we also obtained evidence that the lipid-linked oligosaccharide can be modified by the in vivo action of ER glycosidases. Since radiolabeling of the oligosaccharide-lipid in thyroid slices indicated a preferential turnover of the glucose residues, the possible existence of a glucosyltransferase-glucosidase shuttle was explored with the use of castanospermine. In the presence of this glucosidase inhibitor, the formation of under-glucosylated and nonglucosylated oligosaccharides was not observed, even under conditions of energy deprivation in which they accumulate. Glucosidase inhibition in ER vesicle incubations likewise prevented the appearance of incompletely glucosylated oligosaccharide-lipids. Studies employing the mannosidase inhibitor 1-deoxymannojirimycin in thyroid slices furthermore indicated that in vivo removal of at least one mannose residue from the dolichyl pyrophosphate-linked oligosaccharide can occur.  相似文献   

16.
The distribution of lipid-linked oligosaccharide intermediates in cultured mammalian cells has been studied under conditions of glucose deprivation. It was found that at low to moderate cell densities within 20 min of glucose starvation, the major species of lipid-linked oligosaccharide shifted from mainly a single species containing three glucose, nine mannose, and two N-acetylglucosamine residues to a pattern dominated by two species containing either five mannose and two N-acetylglucosamine residues or two mannose and two N-acetylglucosamine residues. At high cell densities, this effect was not evident. Continued glucose starvation at low density resulted in a second shift in distribution in which the proportions of these two species decreased and that of the original major species (Glc3Man9GlcNAc2) increased. Addition of glucose or mannose, but not pyruvate, glutamine, galactose, inositol, or glycine, prevented the shift to the Man5GlcNAc2 and Man2GlcNAc2 species. The intermediates that accumulate during glucose starvation were identified by their elution position on gel filtration columns, sensitivity to digestion with alpha-mannosidase, resistance to digestion with endo-beta-N-acetylglucosaminidase H, and by the products of Smith degradation. These data suggest that a regulatory point in the lipid-linked oligosaccharide synthetic pathway exists at the reaction in which Man5GlcNAc2-P-P-dolichol is converted to Man6GlcNAc2-P-P-dolichol.  相似文献   

17.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

18.
Glucosamine and mannose were incorporated into oligosaccharides linked to either polar membrane-lipids or to asparagine residues of endogenous proteins in apical growing tissues of the etiolated pea stem. The glycolipids were subject to turnover in pulse-chase tests and protein-linked oligosaccharides accumulated with time, as expected for a precursor-product relationship. The newly formed glycoproteins were hydrolyzed by endo-β-N-acetylglucosaminidase H to oligosaccharides in the same size range as those released by dilute acid from the lipid-linked oligosaccharides formed during the pulse. The glycoproteins were also partly degraded to free N-acetylglucosamine by β-N-acetylhexosaminidase. Affinity of the carbohydrate moiety of the protein for concanavalin A increased between the beginning and the end of the chase, indicating processing following core glycosylation.

The addition of UDP-N-acetyl-[14C]glucosamine plus external peptide acceptors (derived from carboxymethylated α-lactalbumin) to membrane preparations from the pea stem resulted in peptide glycosylation at the expense of lipid-linked oligosaccharide. Glycosylation of endogenous protein acceptors did not take place via lipid intermediates but directly from the sugar nucleotide substrate. Tunicamycin inhibited glycosyltransfer to both glycolipids and added peptides, but not to endogenous protein. It is concluded that limiting factors for N-glycosylation by pea membranes in vitro could include the unavailability of endogenous acceptors or the inability to fully elongate and internalize lipid precursors, but is not due to any limitation in capacity for N-glycosylation.

  相似文献   

19.
Influenza-virus-infected cells were labelled with radioactive sugars and extracted to give fractions containing lipid-linked oligosaccharides and glycoproteins. The oligosaccharides linked to lipid were of the 'high-mannose' type and contained glucose. In the glycoprotein fraction, radioactivity was associated with virus proteins and found to occur predominantly in the 'high-mannose' type of glycopeptides. In the presence of the inhibitors 2-deoxy-D-glucose, 2-deoxy-2-amino-D-glucose (glucosamine), 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose incorporation of radiolabelled sugars into lipid- and protein-linked oligosaccharides was decreased. Kinetic analysis showed that the inhibitors affected first the assembly of lipid-linked oligosaccharides and then protein glycosylation after a lag period. During inhibition by deoxyglucose and the fluoro sugars lipid-linked oligosaccharides were formed that contained oligosaccharides of decreased molecular weight. No such aberrant forms were found during inhibition by glucosamine. In the case of inhibition by deoxyglucose it was shown that the aberrant oligosaccharides were not transferred to protein. Inhibition of formation of lipid-linked oligosaccharides by deoxyglucose and fluoro sugars was antagonized by mannose, in which case oligosaccharides of normal molecular weight were formed. The inhibition by glucosamine was reversed by its removal from the medium. The reversible effects of these inhibitors exemplify their usefulness as tools in the study of glycosylation processes.  相似文献   

20.
The formation in vivo of lipid-linked oligosaccharides is inhibited by deoxlucose in wild-type BHK cells but not in a cell-line (dGR) selected for resistance towards deoxyglucose. On the other hand, the formation in vitro of lipid-linked oligosaccharides by membranes from dGR (and wild-type) cells is inhibited by GDPddeoxyglucose, the main metabolite responsible for inhibition of protein glycosylation by deoxyglucose. Our results suggest increased pools of GDP mannose and decreased amounts of GDPdeoxyglucose in the mutant cell line. The enlarged ratio of GDPmannose to GDPdeoxyglucos in the dGR cells treated with deoxyglucose is shown to moderate the inhibition of formation of lipid-linked oligosaccharides, and this explains the capacity of the dGR-cells grow in the presence of deoxyglucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号