首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Confluent monolayers of the established opossum kidney cell line were exposed to NH4Cl pulses (20 mmol/liter) during continuous intracellular measurements of pH, membrane potential (PD m ) and membrane resistance (R m) in bicarbonate-free Ringer. The removal of extracellular NH4Cl leads to an intracellular acidification from a control value of 7.33±0.08 to 6.47±0.03 (n=7). This inhibits the absolute K conductance (g K+), reflected by a decrease of K+ transference number from 71±3% (n=28) to 26±6% (n=5), a 2.6±0.2-fold rise ofR m, and a depolarization by 24.2±1.5 mV (n=52). In contrast, intracellular acidification during a block ofg K+ by 3 mmol/liter BaCl2 enhances the total membrane conductance, being shown byR m decrease to 68±7% of control and cell membrane depolarization by 9.8±2.8 mV (n=17). Conversely, intracellular alkalinization under barium elevatesR m and hyperpolarizes PD m . The replacement of extracellular sodium by choline in the presence of BaCl2 significantly hyperpolarizes PD m and increasesR m, indicating the presence of a sodium conductance. This conductance is not inhibited by 10–4 mol/liter amiloride (n=7). Patch-clamp studies at the apical membrane (excised inside-out configuration) revealed two Na+-conductive channels with 18.8±1.4 pS (n=10) and 146 pS single-channel conductance. Both channels are inwardly rectifying and highly selective towards Cl. The low-conductive channel is 4.8 times more permeable for Na+ than for K+. Its open probability rises at depolarizing potentials and is dependent on the pH of the membrane inside (higher at pH 6.5 than at pH 7.8).  相似文献   

2.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

3.
Summary The effects of cAMP, ATP and GTP on the Ca2+-dependent K+ channel of fresh (1–2 days) or cold-stored (28–36 days) human red cells were studied using atomic absorption flame photometry of Ca2+-EGTA loaded ghosts which had been resealed to monovalent cations in dextran solutions. When high-K+ ghosts were incubated in an isotonic Na+ medium, the rate constant of Ca2+-dependent K+ efflux was reduced by a half on increasing the theophylline concentration to 40mm. This effect was observed in ghosts from both fresh and stored cells, but only if they were previously loaded with ATP. The inhibition was more marked when Mg2+ was added together with ATP, and it was abolished by raising free Ca2+ to the micromolar level. Like theophylline, isobutyl methylxanthine (10mm) also affected K+ efflux. cAMP (0.2–0.5mm), added both internally and externally (as free salt, dibutyryl or bromide derivatives), had no significant effect on K+ loss when the ghost free-Ca2+ level was below 1 m, but it was slightly inhibitory at higher concentrations. The combined presence of cAMP (0.2mm) plus either theophylline (10mm), or isobutyl methylxanthine (0.5mm), was more effective than cAMP alone. This inhibition showed a strict requirement for ATP plus Mg2+ and it, was not overcome by raising internal Ca2+. Ghosts from stored cells seemed more sensitive than those from fresh cells, to the combined action of cAMP and methylxanthines. Loading ATP into ghosts from fresh or stored cells markedly decreased K+ loss. Although this effect was observed in the absence of added Mg2+ (0.5mm EDTA present), it was potentiated upon adding 2mm Mg2+. The K+ efflux from ATP-loaded ghosts was not altered by dithio-bis-nitrobenzoic acid (10mm) or acridine orange (100 m), while it was increased two-to fourfold by incubating with MgF2 (10mm), or MgF2 (10mm)+theophylline (40mm), respectively. By contrast, a marked efflux reduction was obtained by incorporating 0.5mm GTP into ATP-containing ghosts. The degree of phosphorylation obtained by incubating membranes with (-32P)ATP under various conditions affecting K+ channel activity, was in direct correspondence to their effect on K+ efflux. The results suggest that the K+ channel of red cells is under complex metabolic control, via cAMP-mediated and nonmediated mechanisms, some which require ATP and presumably, involve phosphorylation of the channel proteins.  相似文献   

4.
Using the two-microelectrode voltage clamp technique in Xenopus laevis oocytes, we estimated Na+-K+-ATPase activity from the dihydroouabain-sensitive current (I DHO) in the presence of increasing concentrations of tetraethylammonium (TEA+; 0, 5, 10, 20, 40 mm), a well-known blocker of K+ channels. The effects of TEA+ on the total oocyte currents could be separated into two distinct parts: generation of a nonsaturating inward current increasing with negative membrane potentials (V M) and a saturable inhibitory component affecting an outward current easily detectable at positive V M. The nonsaturating component appears to be a barium-sensitive electrodiffusion of TEA+ which can be described by the Goldman-Hodgkin-Katz equation, while the saturating component is consistent with the expected blocking effect of TEA+ on K+ channels. Interestingly, this latter component disappears when the Na+-K+-ATPase is inhibited by 10 m DHO. Conversely, TEA+ inhibits a component of I DHO with a k d of 25±4 mm at +50 mV. As the TEA+-sensitive current present in I DHO reversed at –75 mV, we hypothesized that it could come from an inhibition of K+ channels whose activity varies in parallel with the Na+-K+-ATPase activity. Supporting this hypothesis, the inward portion of this TEA+-sensitive current can be completely abolished by the addition of 1 mm Ba2+ to the bath. This study suggests that, in X. laevis oocytes, a close link exists between the Na-K-ATPase activity and TEA+-sensitive K+ currents and indicates that, in the absence of effective K+ channel inhibitors, I DHO does not exclusively represent the Na+-K+-ATPase-generated current.  相似文献   

5.
Summary Membrane-permeant weak acids and bases, when applied to the bath, modulate the resting membrane potential and the glucose-induced electrical activity of pancreatic B cells, as well as their insulin secretion. These substances alter the activity of a metabolite-regulated. ATP-sensitive K+ channel which underlies the B-cell resting potential. We now present several lines of evidence indicating that the channel may be directly gated by pH i . (1) The time course of K+(ATP) channel activity during exposure to and washout of NH4Cl under a variety of experimental conditions, including alteration of the electrochemical gradient for NH4Cl entry and inhibition of the Na o + H i + exchanger, resembles the time course of pH i measured in other cell types that have been similarly treated. (2) Increasing pH o over the range 6.25–7.9 increases K+(ATP) channel activity in cell-attached patches where the cell surface exposed to the bath has been permeabilized to H+ by the application of the K+/H+ exchanger nigericin. (3) Increasing pH i over a similar range produces similar effects on K+(ATP) channels in inside-out excised patches exposed to small concentrations of ATP i . The physiological role of pH i in the metabolic gating of this channel remains to be explored.  相似文献   

6.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

7.
8.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

9.
Summary We have chosen the MDCK cell line to investigate aldosterone action on H+ transport and its role in regulating cell membrane K+ conductance (G m K ). Cells grown in a monolayer respond to aldosterone indicated by the dose-dependent formation of domes and by the alkalinization of the dome fluid. The pH sensitivity of the plasma membrane K+ channels was tested in giant cells fused from individual MDCK cells. Cytoplasmic pH (pH i ) andG m K were measured simultaneously while the cell interior was acidified gradually by an extracellular acid load. We found a steep signoidal relationship between pH i andG m K (Hill coefficient 4.4±0.4), indicating multiple H+ binding sites at a single K+ channel. Application of aldosterone increased pH i within 120 min from 7.22±0.04 to 7.45±0.02 and from 7.15±0.03 to 7.28±0.02 in the absence and presence of the CO2/HCO 3 buffer system, respectively. We conclude that the hormone-induced cytoplasmic alkalinization in the presence of CO2/ HCO 3 is limited by the increased activity of a pH i -regulating HCO 3 extrusion system. SinceG m K is stimulated half-maximally at the pH i of 7.18±0.04, internal H+ ions could serve as an effective intracellular signal for the regulation of transepithelial K+ flux.  相似文献   

10.
Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

11.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

12.
Studies on single K+-channel currents recorded from isolated rat heart muscle cells, in which early repolarization is known to be exceptionally fast, are reported here. A K+-channel which is blocked by TEA (tetraethylammonium) from the inside only has been found.The total open time of the channel, measured in steady-state after activation, indicated outward rectifying properties. The single channel conductance increases with depolarization from 25 pS at-70 mV to 75 pS at+70 mV.Selectivity of the channel has also been measured and it was found that only Rb+ and K+ can permeate the channel, whereas the permeability (P) for Li+, Na+, Cl-, Mg2+, and Ca2+ is less than 0.05 times .Ba2+ and Cs+ block the channel activity.These results clearly demonstrate the existence of K+-selective outward rectifying conductance pathways in rat ventricular myocytes.  相似文献   

13.
Background: There are controversial reports on the effect of sodium-potassium adenosine triphosphatase (Na+-K+ ATPase) inhibition on mast cell mediator release. Some of them have indicated that ouabain (strophanthin G), a specific Na+-K+ ATPase inhibitor, inhibited the release, whereas the others have shown that ouabain had no effect or even had a stimulatory effect on the mediator secretion. Most of these studies have utilized animal-derived mast cells. The aim of this study was to determine the effect of Na+-K+ ATPase inhibition on human skin mast cells. Methods: Unpurified and purified mast cells were obtained from newborn foreskins and stimulated by calcium ionophore A23187 (1 μM) for 30 min following a 1 hr incubation with various concentrations (10−4 to 10−8 M) of ouabain. Histamine release was assayed by enzyme-linked immunosorbent assay (ELISA). Results: The results indicated that ouabain had no significant effect on the non-immunologic histamine release from human skin mast cells, in vitro. Conclusions: Na+-K+ ATPase inhibition by ouabain had no significant effect on the non-immunologic histamine release from human cutaneous mast cells and suggested differences between human and animal mast cells.  相似文献   

14.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

15.
Summary Ca++-ATPase activity was demonstrated histochemically at light- and electron-microscopic levels in inner and outer segments of retinal photoreceptor cells of the guinea pig with the use of a newly developed one-step lead-citrate method (Ando et al. 1981). The localization of ouabain-sensitive, K+-dependent p-nitrophenylphosphatase (K+-NPPase) activity, which represents the second dephosphorylative step of the Na+-K+-ATPase system, was studied by use of the one-step method newly adapted for ultracytochemistry (Mayahara et al. 1980). In retinal photoreceptor cells fixed for 15 min in 2% paraformaldehyde the electron-dense Ca++-ATPase reaction product accumulated significantly on the inner membranes of the mitochondria but not on the plasmalemma or other cytoplasmic elements of the inner segments. The membranes of the outer segments remained unstained except the membrane arrays in close apposition to the retinal pigment epithelium. The cytochemical reaction was Ca++- and substrate-dependent and showed sensitivity to oligomycin. When Mg++-ions were used instead of Ca++-ions, a distinct reaction was also found on mitochondrial inner membranes.In contrast to the localization of the Ca++ -ATPase activity, the K+-NPPase activity was demonstrated only on the plasmalemma of the inner segments, but not on the mitochondria, other cytoplasmic elements or the outer segment membranes. This reaction was almost completely abolished by ouabain or by elimination of K+ from the incubation medium.Fellow of the Alexander von Humboldt Foundation, Bonn, Federal Republic of Germany  相似文献   

16.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

17.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

18.
Summary The present study has been performed to test for the effect of intracellular calcium and of serotonin on the channel activity in patches from subconfluent MDCK-cells. In inside-out patches, inwardly rectifying potassium-selective channels are observed with open probabilities of 0.01±0.01, 0.24±0.03 and 0.39±0.07, at 100 nmol/liter, 1 mol/liter or 10 mol/liter calcium activity, respectively. The single-channel slope conductance is 34±2 pS, if the potential difference across the patch (V ) is zero, and approaches 59±1 pS, ifV is –50 mV, cell negative. In the cell-attached mode, little channel activity is observed prior to application of serotonin (open probability=0.03±0.03). If 1 mol/liter serotonin is added to the bath perfusate, the open probability increases rapidly to a peak value of 0.34±0.04 within 8 sec. In continued presence of the hormone, the open probability declines to approach 0.06±0.02 within 30 sec. At zero potential difference between pipette and reference in the bath (i.e., the potential difference across the patch is equal to the potential difference across the cell membrane), the single-channel conductance is 59±4 pS. In conclusion, inwardly rectifying potassium channels have been identified in the cell membrane of subconfluent MDCK-cells, which are activated to a similar extent by increase of intracellular calcium activity to 1 mol/liter and by extracellular application of 1 mol/liter serotonin.  相似文献   

19.
We have used the patch clamp technique to study the effects of inhibiting the apical Na+ transport on the basolateral small-conductance K+ channel (SK) in cell-attached patches in cortical collecting duct (CCD) of the rat kidney. Application of 50 μM amiloride decreased the activity of SK, defined as nP o (a product of channel open probability and channel number), to 61% of the control value. Application of 1 μM benzamil, a specific Na+ channel blocker, mimicked the effects of amiloride and decreased the activity of the SK to 62% of the control value. In addition, benzamil reduced intracellular Na+ concentration from 15 to 11 mM. The effect of amiloride was not the result of a decrease in intracellular pH, since addition 50 μM 5-(n-ethyl-n-isopropyl) amiloride (EIPA), an agent that specifically blocks the Na/H exchanger, did not alter the channel activity. The inhibitory effect of amiloride depends on extracellular Ca2+ because removal of Ca2+ from the bath abolished the effect. Using Fura-2 AM to measure the intracellular Ca2+, we observed that amiloride and benzamil significantly decreased intracellular Ca2+ in the Ca2+-containing solution but had no effect in a Ca2+-free bath. Furthermore, raising intracellular Ca2+ from 10 to 50 and 100 nM with ionomycin increased the activity of the SK in cell-attached patches but not in excised patches, suggesting that changes in intracellular Ca2+ are responsible for the effects on SK activity of inhibition of the Na+ transport. Since the neuronal form of nitric oxide synthase (nNOS) is expressed in the CCD and the function of the nNOS is Ca2+ dependent, we examined whether the effects of amiloride or benzamil were mediated by the NO-cGMP–dependent pathways. Addition of 10 μM S-nitroso-n-acetyl-penicillamine (SNAP) or 100 μM 8-bromoguanosine 3′:5′-cyclic monophosphate (8Br-cGMP) completely restored channel activity when it had been decreased by either amiloride or benzamil. Finally, addition of SNAP caused a significant increase in channel activity in the Ca2+-free bath solution. We conclude that Ca2+-dependent NO generation mediates the effect of inhibiting the apical Na+ transport on the basolateral SK in the rat CCD.  相似文献   

20.
To determine if their properties are consistent with a role in regulation of transepithelial transport, Ca2+-activated K+ channels from the basolateral plasma membrane of the surface cells in the distal colon have been characterized by single channel analysis after fusion of vesicles with planar lipid bilayers. A Ca2+-activated K+ channel with a single channel conductance of 275 pS was predominant. The sensitivity to Ca2+ was strongly dependent on the membrane potential and on the pH. At a neutral pH, the K 0.5 for Ca2+ was raised from 20nm at a potential of 0 mV to 300nm at –40 mV. A decrease in pH at the cytoplasmic face of the K+ channel reduced the Ca2+ sensitivity dramatically. A loss of the high sensitivity to Ca2+ was also observed after incubation with MgCl2, possibly a result of dephosphorylation of the channels by endogenous phosphatases. Modification of the channel protein may thus explain the variation in Ca2+ sensitivity between studies on K+ channels from the same tissue. High affinity inhibition (K 0.5=10nm) by charybdotoxin of the Ca2+-activated K+ channel from the extracellular face could be lifted by an outward flux of K+ through the channel. However, at the ion gradients and potentials found in the intact epithelium, charybdotoxin should be a useful tool for examination of the role of maxi K+ channels. The high sensitivity for Ca2+ and the properties of the activator site are in agreement with an important regulatory role for the high conductance K+ channel in the epithelial cells.Dr. E. Moczydlowsky, Yale University School of Medicine, New Haven, CT, and Dr. Per Stampe, Brandeis University, Waltham, MA, are thanked for introduction to the bilayer technique. Tove Soland is thanked for excellent technical assistance. This work was supported by the Novo Nordisk Foundation, the Carlsberg Foundation, the Danish Medical Research Council, and the Austrian Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号