首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.  相似文献   

2.
Surveys of nucleotide sequence polymorphism in Drosophila melanogaster and Drosophila simulans were performed at 2 interacting loci crucial for gametogenesis: bag-of-marbles (bam) and benign gonial cell neoplasm (bgcn). At the polymorphism level, both loci appear to be evolving under the expectations of the neutral theory. However, ratios of polymorphism and divergence for synonymous and nonsynonymous mutations depart significantly from neutral expectations for both loci consistent with a previous observation of positive selection at bam. The deviations suggest either an excess of synonymous polymorphisms or an excess of nonsynonymous fixations at both loci. Synonymous evolution appears to conform to neutrality at bam. At bgcn, there is evidence of positive selection affecting preferred synonymous mutations along the D. simulans lineage. However, there is also a significantly higher rate of nonsynonymous fixations at bgcn within D. simulans. Thus, the deviation from neutrality detected by the McDonald-Kreitman test at these 2 loci is likely due to the selective acceleration of nonsynonymous fixations. Differences in the pattern of amino acid fixations between these 2 interacting proteins suggest that the detected positive selection is not due to a simple model of coevolution.  相似文献   

3.
Lazzaro BP 《Genetics》2005,169(4):2023-2034
Scavenger receptor proteins are involved in the cellular internalization of a broad variety of foreign material, including pathogenic bacteria during phagocytosis. I find here that nonsynonymous divergence in three class C scavenger receptors (Sr-C's) between Drosophila melanogaster and D. simulans and between each of these species and D. yakuba is approximately four times the typical genome average. These genes also exhibit unusually high levels of segregating nonsynonymous polymorphism in D. melanogaster and D. simulans populations. A fourth Sr-C is comparatively conserved. McDonald-Kreitman tests reveal a significant excess of replacement fixations between D. melanogaster and D. simulans in the Sr-C's, but tests of polymorphic site frequency spectra do not support models of directional selection. It is possible that the molecular functions of SR-C proteins are sufficiently robust to allow exceptionally high amino acid substitution rates without compromising organismal fitness. Alternatively, SR-Cs may evolve under diversifying selection, perhaps as a result of pressure from pathogens. Interestingly, Sr-CIII and Sr-CIV are polymorphic for premature stop codons. Sr-CIV is also polymorphic for an in-frame 101-codon deletion and for the absence of one intron.  相似文献   

4.
M Aguadé 《Genetics》1999,152(2):543-551
Nucleotide sequence variation at the Acp29AB gene region has been surveyed in Drosophila melanogaster from Spain (12 lines), Ivory Coast (14 lines), and Malawi (13 lines) and in one line of D. simulans. The approximately 1.7-kb region studied encompasses the Acp29AB gene that codes for a male accessory gland protein and its flanking regions. Seventy-seven nucleotide and 8 length polymorphisms were detected. Nonsynonymous polymorphism was an order of magnitude lower than synonymous polymorphism, but still high relative to other non-sex-related genes. In D. melanogaster variation at this region revealed no major genetic differentiation between East and West African populations, while differentiation was highly significant between the European and the two African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites showed an excess of fixed nonsynonymous changes, which indicates that the evolution of the Acp29AB protein has been driven by directional selection at least after the split of the D. melanogaster and D. simulans lineages. The pattern of variation in extant populations of D. melanogaster favors a scenario where the fixation of advantageous replacement substitutions occurred in the early stages of speciation and balancing selection is maintaining variation in this species.  相似文献   

5.
Polymorphism and Divergence at a Drosophila Pseudogene Locus   总被引:2,自引:0,他引:2       下载免费PDF全文
The larval cuticle protein (Lcp) cluster in Drosophila melanogaster contains four functional genes and a closely related pseudogene. A 630-bp fragment including the larval cuticle pseudogene locus (Lcpψ) was nucleotide sequenced in 10 strains of D. melanogaster and a 458-bp Lcpψ fragment from D. simulans was also sequenced. We used these data to test the hypotheses that the rates of synonymous and nonsynonymous substitution are equal, that the absolute levels of variation are higher than in functional genes, and that intraspecific polymorphism is correlated with interspecific divergence. As predicted, synonymous and nonsynonymous substitution rates were equivalent, and overall nucleotide divergence between D. melanogaster and D. simulans (Jukes-Cantor distance = 0.149 +/- 0.150) was extremely high. However, within-species DNA sequence comparisons at Lcpψ revealed lower levels of polymorphism ( & = 0.001 +/- 0.001) than at many functional loci in D. melanogaster. Using the HUDSON, KREITMAN, and AGUADE (HKA) test, we show that the level of polymorphism in Lcpψ within D. melanogaster is lower than expected given the amount of divergence between D. melanogaster and D. simulans when the pseudogene data are compared to the Adh 5' flanking region. Because the Lcpψ lies in a region of relatively infrequent recombination, we suggest that the low level of within-species polymorphism is the result of background selection.  相似文献   

6.
Pröschel M  Zhang Z  Parsch J 《Genetics》2006,174(2):893-900
Many genes in higher eukaryotes show sexually dimorphic expression, and these genes tend to be among the most divergent between species. In most cases, however, it is not known whether this rapid divergence is caused by positive selection or if it is due to a relaxation of selective constraint. To distinguish between these two possibilities, we surveyed DNA sequence polymorphism in 91 Drosophila melanogaster genes with male-, female-, or nonsex-biased expression and determined their divergence from the sister species D. simulans. Using several single- and multilocus statistical tests, we estimated the type and strength of selection influencing the evolution of the proteins encoded by genes of each expression class. Adaptive evolution, as indicated by a relative excess of nonsynonymous divergence between species, was common among the sex-biased genes (both male and female). Male-biased genes, in particular, showed a strong and consistent signal of positive selection, while female-biased genes showed more variation in the type of selection they experience. Genes expressed equally in the two sexes, in contrast, showed no evidence for adaptive evolution between D. melanogaster and D. simulans. This suggests that sexual selection and intersexual coevolution are the major forces driving genetic differentiation between species.  相似文献   

7.
8.
D. J. Begun  C. F. Aquadro 《Genetics》1991,129(4):1147-1158
We have estimated DNA sequence variation and differentiation within and between Drosophila melanogaster and its sibling species, Drosophila simulans, using six-cutter restriction site variation at yellow-achaete (y-ac), phosphogluconate dehydrogenase (Pgd), and period (per). These three gene regions are of varying distance from the telomere of the X chromosome and range from very low to moderate rates of recombination in D. melanogaster. According to Tajima's test of neutrality, the Pgd region has been influenced by balancing selection in D. melanogaster. This is consistent with previous data suggesting the allozyme polymorphism at this locus is visible to selection. The Hudson, Kreitman, Aguadé test of neutrality reveals a significant departure from neutrality for the y-ac region compared to the per or rosy regions in D. simulans. There is also a significant departure for the y-ac region compared to the Adh 5' flanking region in D. melanogaster. In both species the departure appears to be due to reduced variation at y-ac compared to that expected from divergence between D. simulans and D. melanogaster. We conclude that recent hitchhiking associated with the selective fixation of one or more advantageous mutants in the y-ac region is the best explanation for reduced variation at y-ac.  相似文献   

9.
Morton RA  Choudhary M  Cariou ML  Singh RS 《Genetica》2004,120(1-3):101-114
Comparison of synonymous and nonsynonymous variation/substitution within and between species at individual genes has become a widely used general approach to detect the effect of selection versus drift. The sibling species group comprised of two cosmopolitan (Drosophila melanogaster and Drosophila simulans) and two island (Drosophila mauritiana and Drosophila sechellia) species has become a model system for such studies. In the present study we reanalyzed the pattern of protein variation in these species, and the results were compared against the patterns of nucleotide variation obtained from the literature, mostly available for melanogaster and simulans. We have mainly focused on the contrasting patterns of variation between the cosmopolitan pair. The results can be summarized as follows: (1) As expected the island species D. mauritiana and D. sechellia showed much less variation than the cosmopolitan species D. melanogaster and D. simulans. (2) The chromosome 2 showed significantly less variation than chromosome 3 and X in all four species which may indicate effects of past selective sweeps. (3) In contrast to its overall low variation, D. mauritiana showed highest variation for X-linked loci which may indicate introgression from its sibling, D. simulans. (4) An average population of D. simulans was as heterozygous as that of D. melanogaster (14.4% v.s. 13.9%) but the difference was large and significant when considering only polymorphic loci (37.2% v.s. 26.1%). (5) The species-wise pooled populations of these two species showed similar results (all loci = 18.3% v.s. 20.0%, polymorphic loci = 47.2% v.s. 37.6%). (6) An average population of D. simulans had more low-frequency alleles than D. melanogaster, and the D. simulans alleles were found widely distributed in all populations whereas the D. melanogaster alleles were limited to local populations. As a results of this, pooled populations of D. melanogaster showed more polymorphic loci than those of D. simulans (48.0% v.s. 32.0%) but the difference was reduced when the comparison was made on the basis of an average population (29.1% v.s. 21.4%). (7) While the allele frequency distributions within populations were nonsignificant in both D. melanogaster and D. simulans, melanogaster had fewer than simulans, but more than expected from the neutral theory, low frequency alleles. (8) Diallelic loci with the second allele with a frequency less than 20% had similar frequencies in all four species but those with the second allele with a frequency higher than 20% were limited to only melanogaster the latter group of loci have clinal (latitudinal) patterns of variation indicative of balancing selection. (9) The comparison of D. simulans/D. melanogaster protein variation gave a ratio of 1.04 for all loci and 1.42 for polymorphic loci, against a ratio of approximately 2-fold difference for silent nucleotide sites. This suggests that the species ratios of protein and silent nucleotide polymorphism are too close to call for selective difference between silent and allozyme variation in D. simulans. In conclusion, the contrasting levels of allozyme polymorphism, distribution of rare alleles, number of diallelic loci and the patterns of geographic differentiation between the two species suggest the role of natural selection in D. melanogaster, and of possibly ancient population structure and recent worldwide migration in D. simulans. Population size differences alone are insufficient as an explanation for the patterns of variation between these two species.  相似文献   

10.
Hybrid males resulting from crosses between closely related species of Drosophila are sterile. The F1 hybrid sterility phenotype is mainly due to defects occurring during late stages of development that relate to sperm individualization, and so genes controlling sperm development may have been subjected to selective diversification between species. It is also possible that genes of spermatogenesis experience selective constraints given their role in a developmental pathway. We analyzed the molecular evolution of three genes playing a role during the sperm developmental pathway in Drosophila at an early (bam), a mid (aly), and a late (dj) stage. The complete coding region of these genes was sequenced in different strains of Drosophila melanogaster and Drosophila simulans. All three genes showed rapid divergence between species, with larger numbers of nonsynonymous to synonymous differences between species than polymorphisms. Although this could be interpreted as evidence for positive selection at all three genes, formal tests of selection do not support such a conclusion. Departures from neutrality were detected only for dj and bam but not aly. The role played by selection is unique and determined by gene-specific characteristics rather than site of expression. In dj, the departure was due to a high proportion of neutral synonymous polymorphisms in D. simulans, and there was evidence of purifying selection maintaining a high lysine amino acid protein content that is characteristic of other DNA-binding proteins. The earliest spermatogenesis gene surveyed, which plays a role in both male and female gametogenesis, was bam, and its significant departure from neutrality was due to an excess of nonsynonymous substitutions between species. Bam is degraded at the end of mitosis, and rapid evolutionary changes among species might be a characteristic shared with other degradable transient proteins. However, the large number of nonsynonymous changes between D. melanogaster and D. simulans and a phylogenetic comparative analysis among species confirms evidence of positive selection driving the evolution of Bam and suggests an yet unknown germ cell line developmental adaptive change between these two species.  相似文献   

11.
Balakirev ES  Ayala FJ 《Genetics》2004,166(4):1845-1856
The tinman (tin) and bagpipe (bap) genes are members of the NK homeobox gene family of Drosophila, so that tin occupies a higher position than bap in the regulatory hierarchy. Little is known about the level and pattern of genetic polymorphism in homeobox genes. We have analyzed nucleotide polymorphism in 27 strains of Drosophila melanogaster and one each of D. simulans and D. sechellia, within two closely linked regions encompassing a partial sequence of tin and the complete sequence of bap. The two genes exhibit different levels and patterns of nucleotide diversity. Two sets of sharply divergent sequence types are detected for tin. The haplotype structure of bap is more complex: about half of the sequences are identical (or virtually so), while the rest are fairly heterogeneous. The level of silent nucleotide variability is 0.0063 for tin but significantly higher, 0.0141, for bap, a level of polymorphism comparable to the most polymorphic structural genes of D. melanogaster. Recombination rate and gene conversion are also higher for bap than for tin. There is strong linkage disequilibrium, with the highest values in the introns of both genes and exon II of bap. The patterns of polymorphism in tin and bap are not compatible with an equilibrium model of selective neutrality. We suggest that negative selection and demographic history are the major factors shaping the pattern of nucleotide polymorphism in the tin and bap genes; moreover, there are clear indications of positive selection in the bap gene.  相似文献   

12.
Surveys of molecular variation in Drosophila melanogaster and Drosophila simulans have suggested that diversity outside of Africa is a subset of that within Africa. It has been argued that reduced levels of diversity in non-African populations reflect a population bottleneck, adaptation to temperate climates, or both. Here, I summarize the available single-nucleotide polymorphism data for both species. A simple "out of Africa" bottleneck scenario is consistent with geographic patterns for loci on the X chromosome but not with loci on the autosomes. Interestingly, there is a trend toward lower nucleotide diversity on the X chromosome relative to autosomes in non-African populations of D. melanogaster, but the opposite trend is seen in African populations. In African populations, autosomal inversion polymorphisms in D. melanogaster may contribute to reduced autosome diversity relative to the X chromosome. To elucidate the role that selection might play in shaping patterns of variability, I present a summary of within- and between-species patterns of synonymous and replacement variation in both species. Overall, D. melanogaster autosomes harbor an excess of amino acid replacement polymorphisms relative to D. simulans. Interestingly, range expansion from Africa appears to have had little effect on synonymous-to-replacement polymorphism ratios.  相似文献   

13.
14.
H. Akashi 《Genetics》1995,139(2):1067-1076
Patterns of codon usage and ``silent'''' DNA divergence suggest that natural selection discriminates among synonymous codons in Drosophila. ``Preferred'''' codons are consistently found in higher frequencies within their synonymous families in Drosophila melanogaster genes. This suggests a simple model of silent DNA evolution where natural selection favors mutations from unpreferred to preferred codons (preferred changes). Changes in the opposite direction, from preferred to unpreferred synonymous codons (unpreferred changes), are selected against. Here, selection on synonymous DNA mutations is investigated by comparing the evolutionary dynamics of these two categories of silent DNA changes. Sequences from outgroups are used to determine the direction of synonymous DNA changes within and between D. melanogaster and Drosophila simulans for five genes. Population genetics theory shows that differences in the fitness effect of mutations can be inferred from the comparison of ratios of polymorphism to divergence. Unpreferred changes show a significantly higher ratio of polymorphism to divergence than preferred changes in the D. simulans lineage, confirming the action of selection at silent sites. An excess of unpreferred fixations in 28 genes suggests a relaxation of selection on synonymous mutations in D. melanogaster. Estimates of selection coefficients for synonymous mutations (3.6 <|N(e)s| < 1.3) in D. simulans are consistent with the reduced efficacy of natural selection (|N(e)s| < 1) in the three- to sixfold smaller effective population size of D. melanogaster. Synonymous DNA changes appear to be a prevalent class of weakly selected mutations in Drosophila.  相似文献   

15.
Molecular Evolution of Drosophila Metallothionein Genes   总被引:5,自引:3,他引:2       下载免费PDF全文
B. W. Lange  C. H. Langley    W. Stephan 《Genetics》1990,126(4):921-932
The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy metal detoxification. Several different tandem duplications of Mtn have been shown to increase cadmium and copper tolerance, as well as Mtn expression. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, we compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee and Georgia. Restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications and a subset (327) of these lines for Mto duplications. The frequency of pooled Mtn duplications found ranged from 0% to 20%, and was not significantly higher at the contaminated sites. No Mto duplications were identified. Estimates of sequence diversity at the Mtn locus among a subsample (92) of the duplication survey were obtained using four-cutter analysis. This analysis revealed a low level of polymorphism, consistent with both selection at the Mtn locus, and a fairly recent origin for the duplications. To further examine this hypothesis, we sequenced an Mtn allele of Drosophila simulans and measured the amount of nucleotide sequence divergence between D. simulans and its sibling species D. melanogaster. The levels of silent nucleotide polymorphism and divergence in the Mtn region were compared with those in the Adh region, using the neutrality test of R.R. Hudson, M. Kreitman and M. Aguadé.  相似文献   

16.
A strong negative correlation between the rate of amino-acid substitution and codon usage bias in Drosophila has been attributed to interference between positive selection at nonsynonymous sites and weak selection on codon usage. To further explore this possibility we have investigated polymorphism and divergence at three kinds of sites: synonymous, nonsynonymous and intronic in relation to codon bias in D. melanogaster and D. simulans. We confirmed that protein evolution is one of the main explicative parameters for interlocus codon bias variation (r(2) approximately 40%). However, intron or synonymous diversities, which could have been expected to be good indicators of local interference [here defined as the additional increase of drift due to selection on tightly linked sites, also called 'genetic draft' by Gillespie (2000)] did not covary significantly with codon bias or with protein evolution. Concurrently, levels of polymorphism were reduced in regions of low recombination rates whereas codon bias was not. Finally, while nonsynonymous diversities were very well correlated between species, neither synonymous nor intron diversities observed in D. melanogaster were correlated with those observed in D. simulans. All together, our results suggest that the selective constraint on the protein is a stable component of gene evolution while local interference is not. The pattern of variation in genetic draft along the genome therefore seems to be instable through evolutionary times and should therefore be considered as a minor determinant of codon bias variance. We argue that selective constraints for optimal codon usage are likely to be correlated with selective constraints on the protein, both between codons within a gene, as previously suggested, and also between genes within a genome.  相似文献   

17.
DNA sequence variation in a 1.1-kb region including the coding portion of the Tpi locus was examined in 25 homozygous third-chromosome lines of Drosophila melanogaster, nine lines of Drosophila simulans, and one line of Drosophila yakuba. Our data show that the widespread allozyme polymorphism observed in cosmopolitan D. melanogaster is due to a glutamic acid substitution occurring in a phylogenetically conserved lysine that has been identified as part of the "hinged-lid" active site of the enzyme. This observation suggests that the replacement polymorphism may have important functional consequences. One replacement polymorphism was also observed in D. simulans, although its functional relevance is more difficult to assess, since it affects a site that is not strongly conserved. This amino acid change in D. simulans is associated with a single lineage possessing seven unique silent substitutions, which may be indicative of balancing selection or population subdivision. The absence of fixed amino acid differences between D. melanogaster and D. simulans and only a single difference with D. yakuba suggests that triose phosphate isomerase is under strong functional constraint. Silent variation is slightly higher for D. melanogaster than for D. simulans. Finally, we outline the general lack of evidence for old balanced polymorphisms at allozyme loci in D. melanogaster.   相似文献   

18.
Schmid KJ  Nigro L  Aquadro CF  Tautz D 《Genetics》1999,153(4):1717-1729
We present a survey of nucleotide polymorphism of three novel, rapidly evolving genes in populations of Drosophila melanogaster and D. simulans. Levels of silent polymorphism are comparable to other loci, but the number of replacement polymorphisms is higher than that in most other genes surveyed in D. melanogaster and D. simulans. Tests of neutrality fail to reject neutral evolution with one exception. This concerns a gene located in a region of high recombination rate in D. simulans and in a region of low recombination rate in D. melanogaster, due to an inversion. In the latter case it shows a very low number of polymorphisms, presumably due to selective sweeps in the region. Patterns of nucleotide polymorphism suggest that most substitutions are neutral or nearly neutral and that weak (positive and purifying) selection plays a significant role in the evolution of these genes. At all three loci, purifying selection of slightly deleterious replacement mutations appears to be more efficient in D. simulans than in D. melanogaster, presumably due to different effective population sizes. Our analysis suggests that current knowledge about genome-wide patterns of nucleotide polymorphism is far from complete with respect to the types and range of nucleotide substitutions and that further analysis of differences between local populations will be required to understand the forces more completely. We note that rapidly diverging and nearly neutrally evolving genes cannot be expected only in the genome of Drosophila, but are likely to occur in large numbers also in other organisms and that their function and evolution are little understood so far.  相似文献   

19.
20.
Andolfatto P  Kreitman M 《Genetics》2000,154(4):1681-1691
A previous study of nucleotide polymorphism in a Costa Rican population of Drosophila melanogaster found evidence for a nonneutral deficiency in the number of haplotypes near the proximal breakpoint of In(2L)t, a common inversion polymorphism in this species. Another striking feature of the data was a window of unusually high nucleotide diversity spanning the breakpoint site. To distinguish between selective and neutral demographic explanations for the observed patterns in the data, we sample alleles from three additional populations of D. melanogaster and one population of D. simulans. We find that the strength of associations among sites found at the breakpoint varies between populations of D. melanogaster. In D. simulans, analysis of the homologous region reveals unusually elevated levels of nucleotide polymorphism spanning the breakpoint site. As with American populations of D. melanogaster, our D. simulans sample shows a marked reduction in the number of haplotypes but not in nucleotide diversity. Haplotype tests reveal a significant deficiency in the number of haplotypes relative to the neutral expectation in the D. simulans sample and some populations of D. melanogaster. At the breakpoint site, the level of divergence between haplotype classes is comparable to interspecific divergence. The observation of interspecific polymorphisms that differentiate major haplotype classes in both species suggests that haplotype classes at this locus are considerably old. When considered in the context of other studies on patterns of variation within and between populations of D. melanogaster and D. simulans, our data appear more consistent with the operation of selection than with simple demographic explanations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号