首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
The oxidative breakdown of carotenoid evidences the formation of apocarotenoids through carotenoid cleavage dioxygenases (CCDs). Numerous CCDs and apocarotenoids have been identified and characterized in plants. Using available sequence data, a study was performed to investigate the phylogenetic relationship among CCD genes and to statistically estimate the sequence conservation and functional divergence. In total, 77 genes were identified from 39 species belonging to 21 families. Our result of phylogenetic analysis indicated the existence of well-conserved subfamilies. Moreover, comparative genomic analysis showed that the gene structures of the CCDs were highly conserved across some different lineage species. Through functional divergence analysis, a substantial divergence was found between CCD subfamilies. In addition, examination of the site-specific profile revealed the critical amino acid residues accounting for functional divergence. This study mainly focused on the evolution of CCD genes and their functional divergence which may deliver an initial step for further experimental verifications.  相似文献   

3.
The mechanism of all elementary steps involved in the catalytic cycle of benzoylformate decarboxylase (BFD, E.C. 4.1.1.7) to generate the acyloin linkage is investigated by extensive molecular dynamics simulations. Models involving different charge states of amino acids and/or mutants of critical residues were constructed to understand the involvement of the catalytically active residues and the reactivity differences between different substrates in this reaction. Our calculations confirm that H70, S26, and H281 are catalytically active amino acids. H281 functions as a base to accept Hdonor in the first nucleophilic attack and as an acid in the second, to donate the proton back to Oacceptor. S26 assists H281 in deprotonation of the donor aldehyde and protonation of the acceptor aldehyde. In both the first and second nucleophilic attacks, H70 interacts with Oaldehyde and aligns it toward the nucleophilic center. H70 has been found to have an electrostatic effect on the approaching aldehyde whose absence would block the initiation of the reaction. The reactivity difference between benzaldehyde (BA) and acetaldehyde (AA) is mainly explained by the steric interactions of the acceptor aldehyde with the surrounding amino acids in the active center of the enzyme. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 32–46, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
As a member of intrinsically unstructured protein family, β‐casein (β‐CN) contains relatively high amount of prolyl residues, adopts noncompact and flexible structure and exhibits chaperone‐like activity in vitro. Like many chaperones, native β‐CN does not contain cysteinyl residues and exhibits strong tendencies for self‐association. The chaperone‐like activities of three recombinant β‐CNs wild type (WT) β‐CN, C4 β‐CN (with cysteinyl residue in position 4) and C208 β‐CN (with cysteinyl residue in position 208), expressed and purified from E. coli, which, consequently, lack the phosphorylated residues, were examined and compared with that of native β‐CN using insulin and alcohol dehydrogenase as target/substrate proteins. The dimers (β‐CND) of C4‐β‐CN and C208 β‐CN were also studied and their chaperone‐like activities were compared with those of their monomeric forms. Lacking phosphorylation, WT β‐CN, C208 β‐CN, C4 β‐CN and C4 β‐CND exhibited significantly lower chaperone‐like activities than native β‐CN. Dimerization of C208 β‐CN with two distal hydrophilic domains considerably improved its chaperone‐like activity in comparison with its monomeric form. The obtained results demonstrate the significant role played by the polar contributions of phosphorylated residues and N‐terminal hydrophilic domain as important functional elements in enhancing the chaperone‐like activity of native β‐CN. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 623–632, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
A structure‐based comparison of the ligand‐binding domains of 35 nuclear receptors from five different subfamilies is presented. Their ligand and coactivator binding sites are characterized using knowledge‐based contact preference fields for hydrophobic and hydrophilic interactions implemented in the MOE modeling environment. Additionally, for polar knowledge‐based field points the preference for negative or positive electrostatic interactions is estimated using the Poisson‐Boltzmann equation. These molecular‐interaction fields are used to cluster the nuclear receptor family based on similarities of their binding sites. By analyzing the similarities and differences of hydrophobic and polar fields in binding pockets of related receptors it is possible to identify conserved interactions in ligand and coactivator binding pockets, which support e.g. design of specific ligands during lead optimization or virtual screening as docking filter. Examples of remarkable similarities between ligand binding sites of members from phylogenetically different nuclear receptor families (RXR, RAR, HNF4, NR5) and differences between closely related subtypes (LXR, RAR, TR) are discussed in more detail. Significant similarities and differences of coactivator binding sites are shown for NR3Cs, LXRs and PPARs. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 884–894, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
In a seminal paper, Pakula and Sauer (Nature, 1990, 344, 363–364) demonstrated that the increase in side‐chain hydrophobicity has a reverse relationship with protein stability. We have addressed this problem with several examples of mutants that span at different locations in protein structure based on secondary structure and solvent accessibility. We confirmed that the stability change upon single coil mutation at exposed region is reversely correlated with hydrophobicity with a single exception. In addition, we found the existence of such relationship in partially buried coil mutants. The stability of exposed helical mutants is governed by conformational properties. In buried and partially buried helical and strand mutants properties reflecting hydrophobicity have direct relationship with stability, whereas an opposite relationship was obtained with entropy and flexibility. The structural analysis of partially buried/exposed mutants showed that the surrounding residues are important for the stability change upon mutation. These results provide insights to understand the general behavior for the stability of proteins upon amino acid substitutions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 591–599, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.  相似文献   

8.
The reaction of histidine‐containing polypeptides with toxic and essential metals and the molecular mechanism of complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. Therefore, a system of oligopeptides containing histidine residues in various positions of Ala or Gly sequences has been designed and used in heavy metal comparatively binding experiments. The role of spacing residues (Gly and Ala repeats) in selecting the various conformations was investigated. The newly synthesized peptides and metal ion adducts have been characterized by Fourier transform infrared spectroscopy (FTIR) as well as electrospray ion trap mass spectrometry (ESI–MS) and circular dichroism (CD). The analysis of CD‐spectra of the four peptides in water revealed that the secondary structure depends much on the position of each amino acid in the peptide backbone. Our peptides system reveals various binding mechanisms of metal ions to peptides depending on the position of histidine residue and the corresponding conformations of Ala or Gly sequences. Biological and medical consequences of conformational changes of metal‐bound peptides are further discussed. Thus, the binding of heavy metals to four peptides may serve as a model system with respect to the conformational consequences of the metal addition on the amino acid repeats situated in prion protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93:497–508, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
The rapid rise in DNA sequencing has led to an expansion in the number of glycoside hydrolase (GH) families. The GH43 family currently contains α-l-arabinofuranosidase, β-d-xylosidase, α-l-arabinanase, and β-d-galactosidase enzymes for the debranching and degradation of hemicellulose and pectin polymers. Many studies have revealed finer details about members of GH43 that necessitate the division of GH43 into subfamilies, as was done previously for the GH5 and GH13 families. The work presented here is a robust subfamily classification that assigns over 91% of all complete GH43 domains into 37 subfamilies that correlate with conserved sequence residues and results of biochemical assays and structural studies. Furthermore, cooccurrence analysis of these subfamilies and other functional modules revealed strong associations between some GH43 subfamilies and CBM6 and CBM13 domains. Cooccurrence analysis also revealed the presence of proteins containing up to three GH43 domains and belonging to different subfamilies, suggesting significant functional differences for each subfamily. Overall, the subfamily analysis suggests that the GH43 enzymes probably display a hitherto underestimated variety of subtle specificity features that are not apparent when the enzymes are assayed with simple synthetic substrates, such as pNP-glycosides.  相似文献   

10.
Cao J  Shi F  Liu X  Huang G  Zhou M 《FEBS letters》2010,584(23):4775-4782
A study was performed to investigate the phylogenetic relationship among AAAH members and to statistically evaluate sequence conservation and functional divergence. In total, 161 genes were identified from 103 species. Phylogenetic analysis showed that well-conserved subfamilies exist. Exon-intron structure analysis showed that the gene structures of AAAH were highly conserved across some different lineage species, while some species-specific introns were also found. The dynamic distribution of ACT domain suggested one gene fusion event has occurred in eukaryota. Significant functional divergence was found between some subgroups. Analysis of the site-specific profiles revealed critical amino acid residues for functional divergence. This study highlights the molecular evolution of this family and may provide a starting point for further experimental verifications.  相似文献   

11.
Predicting functional amino acid residues in silico is important for comparative genomics. In this paper, we focus on the issue of how to statistically identify cluster-specific amino acid residues that are related to the functional divergence after gene duplication. We approach this problem using a framework based on site-specific shift of amino acid property (type-II functional divergence), as opposed to site-specific shift of evolutionary rate (type-I functional divergence). An efficient statistical procedure is implemented to facilitate the development of phylogenomic database for cluster-specific residues of large-scale protein families. Our method has the following features: 1) statistical testing of the type-II functional divergence and 2) the site-specific Bayesian profile to measure how amino acid residues contribute to type-II (cluster-specific) functional divergence. Consequently, one may obtain the posterior probability for "functional" cluster-specific residues. Case studies are presented and indicate that radical cluster-specific residues are responsible for most of inferred type-II functional divergence, whereas conserved cluster-specific residues appear less than even those imperfect radical cluster-specific residues to this type of functional divergence.  相似文献   

12.
The existence of an “RNA world” as an early step in the history of life increases the interest for the characterization of these biomolecules. The hairpin ribozyme studied here is a self‐cleaving/ligating motif found in the minus strand of the satellite RNA associated with Tobacco ringspot virus. Surface‐enhanced Raman spectroscopy (SERS) is a powerful tool to study trace amounts of RNA. In controlled conditions, a SERS signal is proportional to the amount of free residues adsorbed on the metal surface. On RNA cleavage, residues are unpaired and free to interact with metal. SERS procedures are used to monitor and quantify the catalysis of ribozyme cleavage at biological concentrations in real time; thus, they propose an interesting alternative to electrophoretic methods. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 384–390, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
To understand the mechanism of ionic detergent‐induced protein denaturation, this study examines the action of sodium dodecyl sulfate on ferrocytochrome c conformation under neutral and strongly alkaline conditions. Equilibrium and stopped‐flow kinetic results consistently suggest that tertiary structure unfolding in the submicellar and chain expansion in the micellar range of SDS concentrations are the two major and discrete events in the perturbation of protein structure. The nature of interaction between the detergent and the protein is predominantly hydrophobic in the submicellar and exclusively hydrophobic at micellar levels of SDS concentration. The observation that SDS also interacts with a highly denatured and negatively charged form of ferrocytochrome c suggests that the interaction is independent of structure, conformation, and ionization state of the protein. The expansion of the protein chain at micellar concentration of SDS is driven by coulombic repulsion between the protein‐bound micelles, and the micelles and anionic amino acid side chains. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 186–199, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Gene duplication provides resources for novel gene functions. Identification of the amino acids responsible for functional conservation and divergence of duplicated genes will strengthen our understanding of their evolutionary course. Here, we conducted a systemic functional investigation of phosphatidylethanolamine binding proteins (PEBPs) in soybean (Glycine max) and Arabidopsis thaliana. Our results demonstrated that after the ancestral duplication, the lineage of the common ancestor of the FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) subfamilies functionally diverged from the MOTHER OF FT AND TFL1 (MFT) subfamily to activate flowering and repress flowering, respectively. They also underwent further specialization after subsequent duplications. Although the functional divergence increased with duplication age, we observed rapid functional divergence for a few pairs of young duplicates in soybean. Association analysis between amino acids and functional variations identified critical amino acid residues that led to functional differences in PEBP members. Using transgenic analysis, we validated a subset of these differences. We report clear experimental evidence for the functional evolution of the PEBPs in the MFT, FT, and TFL1 subfamilies, which predate the origin of angiosperms. Our results highlight the role of amino acid divergence in driving evolutionary novelty after duplication.  相似文献   

15.
Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions.  相似文献   

16.
Pax genes are defined by the presence of a paired box that encodes a DNA-binding domain of 128 amino acids. They are involved in the development of the central nervous system, organogenesis, and oncogenesis. The known Pax genes are divided into five groups within two supergroups. By means of a novel combination of evolutionary analysis, in vitro binding assays and in vivo functional analyses, we have identified the key residues that determine the differing DNA-binding properties of the two supergroups and of the Pax-2, 5, 8 and Pax-6 subgroups within supergroup I. The differences in binding properties between the two supergroups are largely caused by amino acid changes at residues 20 and 121 of the paired domain. Although the paired domains of the Pax-2, 5, 8 and the Pax-6 group differ by >19 amino acids, their distinct DNA-binding properties are determined almost completely by a single amino acid change. Thus, a small number of amino acid changes can account in large part for the divergence in binding properties among the known paired domains. Our approach for selecting candidate sites responsible for the functional divergence between genes should also be useful for studying other gene families.  相似文献   

17.
A defining character of the piscine family Salmonidae is autotetraploidy resulting from a genome-doubling event some 25-100 million years ago. Initially, duplicated genes may have undergone concerted evolution and tetrasomic inheritance. Homeologous chromosomes eventually diverged and the resulting reduction in recombination and gene conversion between paralogous genes allowed the re-establishment of disomic inheritance. Among extant salmonine fishes (e.g. salmon, trout, char) the growth hormone (GH) gene is generally represented by two functional paralogs, GH1 and GH2. Sequence analyses of salmonid GH genes from species of subfamilies Coregoninae (whitefish, ciscos) and Salmoninae were used to examine the evolutionary history of the duplicated GH genes. Two divergent GH gene paralogs were also identified in Coregoninae, but they were not assignable to the GH1 and GH2 categories. The average sequence divergence between the coregonine GH genes was more than twofold lower than the corresponding divergence between the salmonine GH1 and GH2. Phylogenetic analysis of the coregonine GH paralogs did not resolve their relationship to the salmonine paralogs. These findings suggest that disomic inheritance of two GH genes was established by different mechanisms in these two subfamilies.  相似文献   

18.
Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2‐hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2‐methacryloyloxymethyl acetoacetate (MOEAA), 2‐methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC‐containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 966–973, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
In this article, we use animal G-protein alpha subunit family as an example to illustrate a comprehensive analytical pipeline for detecting different types of functional divergence of protein families, which is phylogeny-dependent, combined with ancestral sequence inference and available protein structure information. In particular, we focus on (i) Type-I functional divergence, or site-specific rate shift, as typically exemplified by amino acid residue highly conserved in a subset of homologous genes but highly variable in a different subset of homologous genes, and (ii) Type-II functional divergence, or the shift of cluster-specific amino acid property, as exemplified by a radical shift of amino acid property between duplicate genes, which is otherwise evolutionally conserved. We utilized the software DIVERGE2 to carry out these analyses. In the case of G-protein alpha subunit gene family, we have predicted amino acid residues that are related to either Type-I or Type-II functional divergence. The inferred ancestral sequences for these sites are helpful to explore the trends of functional divergence. Finally, these predicted residues are mapped to the protein structures to test whether these residues may have 3D structure or solvent accessibility preference.  相似文献   

20.
A new program, PSI Protein Classifier, generalizing the results of both successive and independent iterations of the PSI-BLAST program was developed. The technical opportunities of the program are described and illustrated by two examples. An iterative screening of the amino acid sequence database detected potential evolutionary relationships between GH5, GH13, GH27, GH31, GH36, GH66, GH101 and GH114 families of glycoside hydrolases. Analysis of the statistically significant sequence similarity (E-value analysis) allowed us to divide the family GH31 into 38 subfamilies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号