首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
LST-03 lipase from Pseudomonas aeruginosa LST-03 is highly active and stable in the presence of various organic solvents. To further characterize and improve the organic solvent-stability of the LST-03 lipase, residues that potentially provide this stability were identified and mutated to other amino acids in an effort to increase the organic solvent-stability of the protein. S155L, G157R, S164K, S194R, and D209N mutations were found to improve the organic solvent-stability of the wild-type LST-03 lipase. Such mutations were found to induce structural changes, including the formation of a salt bridge, hydrogen bonds, lead to an improved packing of the hydrophobic core, and pI shift of side chain. These changes increased the stability of the protein, thereby improving the organic solvent-stability of the wild-type LST-03 lipase. In addition, a single mutation was found to stabilize the lipase by single or multiple factors.  相似文献   

2.
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0–35°C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.Communicated by H. Ikeda  相似文献   

3.
Interfacial proteins function in unique heterogeneous solvent environments, such as water–oil interfaces. One important example is microbial lipase, which is activated in an oil‐water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all‐atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed‐gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open‐gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α‐helical, as we previously observed in studies that address water–oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.  相似文献   

4.
Ashraf Ghanem 《Chirality》2010,22(6):597-603
The solvent versatility of Chiralpak IB, a 3,5‐dimethylphenylcarbamate derivative of cellulose‐based chiral stationary phase, is demonstrated in the direct enantioselective HPLC monitoring of lipase‐catalyzed kinetic resolution of flurbiprofen in nonstandard HPLC organic solvents. Nonstandard HPLC organic solvents were used as the reaction media for the lipase‐catalysis and in mean time as diluent to dissolve the “difficult to dissolve” enzyme substrate (the acid) and as eluent for the simultaneous enantioselective HPLC baseline separation of both substrate and product in one run without any further derivatization. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]‐HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active‐site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.  相似文献   

6.
An extracellular lipase catalyzing the synthesis of macrocyclic lactones in anhydrous organic solvents was purified to homogeneity from Pseudomonas nov. sp. 109, and characterized. The lipase showed a pI of 5.3 on isoelectric focusing and a Mr of 29,000 +/- 1,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With respect to substrate specificity, optimum chain length for acyl moiety varied depending on the type of reaction catalyzed: C18 in monomer lactone formation, C11 or shorter in dimer lactone formation, and C8 in ester hydrolysis. The amino-terminal 19 amino acid residues of the purified lipase were determined as Ser-Thr-Tyr-Thr-Gln-Thr-Lys-Tyr-Pro-Ile-Val-Leu-Ala-His-Gly-Met-Leu-Gly- Phe, and the gene encoding the lipase was identified by hybridization to a synthetic 20-nucleotide probe, cloned, and sequenced. Nucleotide sequence analysis predicted a 311-amino acid open reading frame, a putative ribosome-binding site, and a 26-amino acid sequence at the amino terminus of the sequence that is not found in the mature protein. This 26-amino acid sequence has many of the characteristics common to known signal peptides. The lipase gene encoded a sequence of Val-Asn-Leu-Ile-Gly-His-Ser-His-Gly-Gly which is very well conserved among lipases, and showed 38-40% overall homology to the amino acid sequences of lipases from Pseudomonas fragie and Pseudomonas cepacia, but showed little homology to those of other lipases, suggesting that some structural features are required for catalyzing macrocyclic lactone synthesis in organic solvents and are restricted to lipases of the Pseudomonas origin.  相似文献   

7.
8.
A novel lipase has been recently isolated from a local Pseudomonas sp. (GQ243724). In the present study, we have tried to increase the organic solvent stability of this lipase using site-directed mutagenesis. Eight variants N219L, N219I, N219P, N219A, N219R, N219D, S251L, and S251K were designed to change the surface hydrophobicity of this enzyme with respect to the wild-type. Among these variants, the stability of N219L and N219I significantly increased in the presence of all tested organic solvents, whereas two mutants (N219R and N219D) significantly exhibited decreased stabilities in all the organic solvent studied, suggesting that improvement of hydrophobic patches on the enzyme surface enhances the stability in organic media. Furthermore, replacing Ser251 with hydrophobic residues on the enzyme surface dramatically diminished its stability in the tested condition. In spite of the distance of the mutated sites from the active site, the values of k cat and K m were affected. Finally, structural analysis of the wild-type and mutated variants was carried out in the presence and absence of some organic solvents using circular dichroism and fluorescence spectroscopy.  相似文献   

9.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

10.
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0–12.0. The activity of LipA was increased in the presence of 5 mM Ca2+ and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.  相似文献   

11.
Haloperoxidases are useful oxygenases involved in halogenation of a range of water‐insoluble organic compounds and can be used without additional high‐cost cofactors. In particular, organic solvent‐stable haloperoxidases are desirable for enzymatic halogenations in the presence of organic solvents. In this study, we adopted a directed evolution approach by error‐prone polymerase chain reaction to improve the organic solvent‐stability of the homodimeric BPO‐A1 haloperoxidase from Streptomyces aureofaciens. Among 1,000 mutant BPO‐A1 haloperoxidases, an organic solvent‐stable mutant OST48 with P123L and P241A mutations and a high active mutant OST959 with H53Y and G162R mutations were selected. The residual activity of mutant OST48 after incubation in 40% (v/v) 1‐propanol for 1 h was 1.8‐fold higher than that of wild‐type BPO‐A1. In addition, the OST48 mutant showed higher stability in methanol, ethanol, dimethyl sulfoxide, and N,N‐dimethylformamide than wild‐type BPO‐A1 haloperoxidase. Moreover, after incubation at 80°C for 1 h, the residual activity of mutant OST959 was 4.6‐fold higher than that of wild‐type BPO‐A1. Based on the evaluation of single amino acid‐substituted mutant models, stabilization of the hydrophobic core derived from P123L mutation and increased numbers of hydrogen bonds derived from G162R mutation led to higher organic solvent‐stability and thermostability, respectively. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:917–924, 2015  相似文献   

12.
To establish an industrially feasible reaction process, the effect of dimethylsulfoxide (DMSO) added to an aqueous solution on the hydrolysis of lipase was investigated using fluorescent substrates. Several lipases from microorganisms were improved in their hydrolysis activities against 4-methylumbelliferyl oleate by DMSO. Variation was found in the effect of DMSO depending on the species of lipase. After the high stability of the lipase from Pseudomonas fluorescens in DMSO solution was confirmed, hydrolysis by this lipase of four acyl-4-methylumbelliferones was studied kinetically at different DMSO concentrations. DMSO added to an aqueous solution increased the Vmax of this lipase for a substrate with strong hydrophobicity, and decreased that value for a substrate with an opposite property. On the other hand, DMSO had a very small effect on Km for each substrate. A fluorometric study suggested that DMSO induced a change of the chemical environment that surrounded tryptophan residues of the lipase. Such conformational change would be one of the causes of the DMSO-induced alteration of its reactive property. These results suggest that the addition of DMSO may be a novel method of ‘solvent engineering’ of this enzyme.  相似文献   

13.
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.  相似文献   

14.
A novel lipase gene from an organic solvent degradable strain Pseudomonas fluorescens JCM5963 was cloned, sequenced, and overexpressed as an N-terminus His-tag fusion protein in E. coli. The alignment of amino acid sequences revealed that the protein contained a lipase motif and shared a medium or high similarity with lipases from other Pseudomonas strains. It could be defined as a member of subfamily I.1 lipase. Most of the recombinant proteins expressed as enzymatically active aggregates soluble in 20 mM Tris–HCl buffer (pH 8.0) containing sodium deoxycholate are remarkably different from most subfamily I.1 and I.2 members of Pseudomonas lipases expressed as inactive inclusion body formerly described in E. coli. The recombinant lipase (rPFL) was purified to homogeneity by Ni-NTA affinity chromatography and Sephacryl S-200 gel filtration chromatography. The purified lipase was stable in broad ranges of temperatures and pH values, with the optimal temperature and pH value being 55 °C and 9.0, respectively. Its activity was found to increase in the presence of metal ions such as Ca2+, Sn2+ and some non-ionic surfactants. In addition, rPFL was activated by and remained stable in a series of water-miscible organic solvents solutions and highly tolerant to some water-immiscible organic solvents. These features render this novel lipase attraction for biotechnological applications in the field of organic synthesis and detergent additives.  相似文献   

15.
The activity of a lipase from a newly isolated Pseudomonas sp. was investigated in the presence of organic solvents and imidazolium chloride‐based ionic liquids (IL) such as BMIM[Cl] and HMIM[Cl]. The lipase activity in the presence of IL was higher compared to that in common organic solvents such as methanol and 2‐propanol. A possible explanation for the enzyme activation might be the structural changes induced in the protein in organic systems. Since IL quench the intensity of fluorescence emission, it was not possible to investigate the major factor that influences the enzyme behavior in these new organic salts. Furthermore, the enzyme exhibited excellent activity in buffer mixtures containing both organic solvent and IL. The stability of the lipase at 50°C was considerably increased in the presence of 20% BMIM[Cl] compared with the untreated lipase in aqueous medium. The light scattering method clearly showed that prevention of aggregation could be the reason for thermal stabilization at 50°C in reactions containing IL. Kinetic analysis of the enzyme in the presence of different concentrations of IL showed that the Km value increased from 0.45 mM in aqueous buffer to 2.4 mM in 50% v/v BMIM[Cl]/buffer. The increase in Km indicates that IL can significantly reduce the binding affinity of the substrate to the enzyme. Also, a linear correlation was observed between the BMIM[Cl] concentration and Vmax of the enzyme. As the concentration of BMIM[Cl] increased from 10 to 50% v/v, the Vmax value increased from 1.8 to 46 μM/min.  相似文献   

16.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with alpha-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 x 10(4)-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 x 10(4)-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

17.
Screening for lipases capable of catalyzing acetylation of cellulosic substrates was conducted in aqueous buffer solution using water-soluble carboxymethyl cellulose (CMC) as substrate. Lipase A12 from Aspergillus niger (A. niger) showed the most promising acetylation activity among 11 tested commercial microbial lipases and was further applied to catalyzing acetylation of solid cellulose in aqueous solution. This reaction was shown to be feasible with an acetylation extent of 0.16 wt % achieved compared with no detectable acetylation in the absence of enzyme. Pretreatments on cellulose substrate by ultrasonic irradiation and surfactant solution only slightly improved the acetylation extent by 44 and 27%, respectively. Alternatively, this lipase-catalyzed acetylation was remarkably improved with solubilized cellulose as substrate in the dimethyl sulfoxide/paraformaldehyde solvent system, with an acetylation extent (7.87 wt %) nearly 50 times higher than that achieved in aqueous solution. This improvement was attributed to (1) the absence of bulk water and the increase in substrate solubility by the transition of reaction media from aqueous solution to organic solvents and (2) the ability of lipase A12 to remain catalytically active in highly polar DMSO. This discovery that the A. niger lipase was capable of surviving its contact with polar solvents was further confirmed by its considerably preserved catalytic activity on CMC acetylation in aqueous media after enzyme pretreatments with organic solvents of various polarities and in mixture media with the aqueous phase partially replaced by organic solvents.  相似文献   

18.
Bacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genus Rhodococcus and taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes from Rhodococcus sp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genus Rhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloning Burkholderia cenocepacia putative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in the Candida antarctica lipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases.  相似文献   

19.
Pheromone‐binding proteins (PBPs) are distributed widely on the antennae of insects, and they are believed to be involved in the process of chemical signal transduction, but their interaction with chemicals is largely unknown. Here, we present our findings on the key amino acid residues of PBPs in the gypsy moth, Lymantria dispar. Potential key residues were screened with the Calculate Mutation Energy program and molecular docking methods. Mutated proteins were obtained by mutating residues to alanine via site‐directed mutagenesis. Circular dichroism (CD) spectroscopy showed that the mutated proteins formed α‐helix, and the stability of protein structure was influenced due to mutations. Fluorescence binding assays were further conducted with the mutated proteins, sex pheromones and analogues. Results showed that to PBP 1, tyrosine at position 41 and phenylalanine at position 76 could be the key amino acid residues influencing the stability of structure; in addition, phenylalanine at 36 and lysine at position 94 could be key amino acid residues interacting with chemicals. To PBP 2, glycine at position 49, phenylalanine at position 76 and lysine at position 121 could be the key amino acid residues in the structural stability. These results shed light on the relationship between the specific amino acids and functions of PBPs in transmitting the chemical signals.  相似文献   

20.
Abstract

The present work describes the enzymatic properties of Penicillium chrysogenum lipase and its behavior in the presence of organic solvents. The temperature and pH optima of the purified lipase was found to be 55?°C and pH 8.0 respectively. The lipase displayed remarkable stability in both polar and non-polar solvents upto 50% (v/v) concentrations for 72?h. A structural perspective of the purified lipase in different organic solvents was gained by using circular dichroism and intrinsic fluorescence spectroscopy. The native lipase consisted of a predominant α-helix structure which was maintained in both polar and non-polar solvents with the exception of ethyl butyrate where the activity was decreased and the structure was disrupted. The quenching of fluorescence intensity in the presence of organic solvents indicated the transformation of the lipase microenviroment P. chrysogenum lipase offers an interesting system for understanding the solvent stability mechanisms which could be used for rationale designing of engineered lipase biocatalysts for application in organic synthesis in non-aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号