首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A 3D subgridding technique is used to model the specific absorption rate (SAR) distribution in the isolated cochlea exposed to mobile phone radiation at 1750 MHz using the FDTD method. The cochlea is modeled using an increasing spatial resolutions of 1, 1/3, 1/5, and 1/7 mm. First simulations were performed at 1 mm spatial resolution. The numerical resolution was then increased to 1/3, 1/5, and 1/7 using subgridding without changing the spatial resolution. A second set of simulations was then performed when both the spatial and numerical resolution were increased together. From the obtained results, we conclude that subgridding is important only when both the numerical resolution of the computational grid and the spatial resolution of the model are increased together.  相似文献   

3.
  相似文献   

4.
We aimed to investigate the beneficial effect of Celastrol on inner ear stem cells and potential therapeutic value for hearing loss. The inner ear stem cells were isolated and characterized from utricular sensory epithelium of adult mice. The stemness was evaluated by sphere formation assay. The relative expressions of Atoh1, MAP-2 and Myosin VI were measured by RT-PCR and immunoblotting. The up-regulation of MAP-2 was also analysed with immunofluorescence. The in vitro neuronal excitability was interrogated by calcium oscillation. The electrophysiological property was determined by inward current recorded on patch clamp. Our results demonstrated that Celastrol treatment significantly improved the viability and proliferation of mouse inner ear stem cells, and facilitated sphere formation. Moreover, Celastrol stimulated differentiation of mouse inner ear stem cells to neuronal-like cells and enhanced neural excitability. Celastrol also enhanced neuronal-like cell identity in the inner ear stem cell derived neurons, as well as their electrophysiological function. Most notably, these effects were apparently associated with the upregulation of Atoh1 in response to Celastrol treatment. Celastrol showed beneficial effect on inner ear stem cells and held therapeutic promise against hearing loss.  相似文献   

5.
Connexin proteins form transmembranous gap junction channels that connect adjacent cells. Connexin26 and connexin30 have been previously shown to be strongly expressed in the inner ear of adult rats and to be mainly colocalized. Because intercellular connections by gap junction proteins are crucial for maturation of different tissues, we investigated the developmental expression of connexin26 and connexin30 in pre‐ and postnatal rats using immunocytochemistry. In the rat otocyst, staining for connexin26 as well as for connexin30 appeared at the 17th day of gestation. However, at this stage, expression of connexin30 was low and restricted to the neurosensory epithelium. Beginning from the 3rd postnatal day connexin26 and ‐30 were expressed with highest immunoreaction in the spiral limbus, the neurosensory epithelium, and between the stria vascularis and the spiral ligament. Beginning from postnatal day 12 the staining pattern resembled that of adult animals, with additional strong staining between all fibrocytes of the spiral ligament. Double labeling experiments demonstrated strongest colocalization of both connexins between the stria vascularis and the spiral ligament. These results demonstrate that development of the cochlear gap junction system precedes the functional maturation of the rat inner ear, which takes place between the 2nd and 3rd postnatal week. In the cochlea of a 22‐week‐old human embryo, connexin26 and connexin30 could be detected in the lateral wall, suggesting that both connexins also play a crucial role in function of the human inner ear. Dev. Genet. 25:306–311, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
杨志  姚俊  曹新 《遗传》2018,40(7):515-524
内耳是感受听觉和平衡觉的复杂器官。在内耳发育过程中,成纤维生长因子(fibroblast growth factor, FGF)信号通路参与了听基板的诱导、螺旋神经节(statoacoustic ganglion, SAG)的发育以及Corti器感觉上皮的分化。FGF信号开启了内耳早期发育的基因调控网络,诱导前基板区域以及听基板的形成。正常表达的FGF信号分子可促进听囊腹侧成神经细胞的特化,但成熟SAG神经元释放的过量FGF5可抑制此过程,形成负反馈环路使SAG在稳定状态下发育。FGF20在Notch信号通路的调控下参与了前感觉上皮区域向毛细胞和支持细胞的分化过程,而内毛细胞分泌的FGF8可调控局部支持细胞分化为柱细胞。人类FGF信号通路异常可导致多种耳聋相关遗传病。此外,FGF信号通路在低等脊椎动物毛细胞自发再生以及干细胞向内耳毛细胞诱导过程中都起到了关键作用。本文综述了FGF信号通路在内耳发育调控以及毛细胞再生中的作用及其相关研究进展,以期为毛细胞再生中FGF信号通路调控机制的阐明奠定理论基础。  相似文献   

9.
The mammalian auditory sensory epithelium (the organ of Corti) contains a number of unique cell types that are arranged in ordered rows. Two of these cell types, inner and outer pillar cells (PCs), are arranged in adjacent rows that form a boundary between a single row of inner hair cells and three rows of outer hair cells (OHCs). PCs are required for auditory function, as mice lacking PCs owing to a mutation in Fgfr3 are deaf. Here, using in vitro and in vivo techniques, we demonstrate that an Fgf8 signal arising from the inner hair cells is the key component in an inductive pathway that regulates the number, position and rate of development of PCs. Deletion of Fgf8 or inhibition of binding between Fgf8 and Fgfr3 leads to defects in PC development, whereas overexpression of Fgf8 or exogenous Fgfr3 activation induces ectopic PC formation and inhibits OHC development. These results suggest that Fgf8-Fgfr3 interactions regulate cellular patterning within the organ of Corti through the induction of one cell fate (PC) and simultaneous inhibition of an alternate fate (OHC) in separate progenitor cells. Some of the effects of both inhibition and overactivation of the Fgf8-Fgfr3 signaling pathway are reversible, suggesting that PC differentiation is dependent upon constant activation of Fgfr3 by Fgf8. These results suggest that PCs might exist in a transient state of differentiation that makes them potential targets for regenerative therapies.  相似文献   

10.
《Developmental neurobiology》2017,77(12):1385-1400
Sonic hedgehog (Shh) signaling plays a major role in vertebrate development, from regulation of proliferation to the patterning of various organs. In amniotes, Shh affects dorsoventral patterning in the inner ear but affects anteroposterior patterning in teleost ears. It remains unknown how altered function of Shh relates to morphogenetic changes that coincide with the evolution of limbs and novel auditory organs in the ear. In this study, we used the tetrapod, Xenopus laevis , to test how increasing concentrations of the Shh signal pathway antagonist, Vismodegib, affects ear development. Vismodegib treatment dose dependently alters the development of the ear, hypaxial muscle, and indirectly the Mauthner cell through its interaction with the inner ear afferents. Together, these phenotypes have an effect on escape response. The altered Mauthner cell likely contributes to the increased time to respond to a stimulus. In addition, the increased hypaxial muscle in the trunk likely contributes to the subtle change in animal C‐start flexion angle. In the ear, Vismodegib treatment results in decreasing segregation between the gravistatic sensory epithelia as the concentration of Vismodegib increases. Furthermore, at higher doses, there is a loss of the horizontal canal but no enantiomorphic transformation, as in bony fish lacking Shh. Like in amniotes, Shh signaling in frogs affects dorsoventral patterning in the ear, suggesting that auditory sensory evolution in sarcopterygians/tetrapods evolved with a shift of Shh function in axis specification. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1385–1400, 2017  相似文献   

11.
Mechanosensory hair cells of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Members of several morphogen families are expressed within and surrounding the chick inner ear during stages of SAG axon outgrowth and pathfinding. On the basis of their localized expression patterns, we hypothesized that bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), and sonic hedgehog (Shh) may function as guidance cues for growing axons and/or may function as trophic factors once axons have reached their targets. To test this hypothesis, three-dimensional collagen cultures were used to grow Embryonic Day 4 (E4) chick SAG explants for 24 h in the presence of purified proteins or beads soaked in proteins. The density of neurite outgrowth was quantified to determine effects on neurite outgrowth. Explants displayed enhanced neurite outgrowth when cultured in the presence of purified BMP4, BMP7, a low concentration of Shh, FGF8, FGF10, or FGF19. In contrast, SAG neurons appeared unresponsive to FGF2. Collagen gel cultures were labeled with terminal dUTP nick-end labeling and immunostained with anti-phosphohistone H3 to determine effects on neuron survival and proliferation, respectively. Treatments that increased neurite outgrowth also yielded significantly fewer apoptotic cells, with no effect on cell proliferation. When presented as focal sources, BMP4, Shh, and FGFs -8, -10, and -19 promoted asymmetric outgrowth from the ganglion in the direction of the beads. BMP7-soaked beads did not induce this response. These results suggest that a subset of morphogens enhance both survival and axon outgrowth of otic neurons.  相似文献   

12.
Mechanosensory hair cells of the vertebrate cochlea offer an excellent developmental system to study cell-fate specification, and to gain insight into the many human neurological deficits which result in a hearing loss, by affecting primarily the hair cells. Therefore, there is great interest in studying the molecular mechanisms that regulate their specification and differentiation. Recent studies, based mostly on loss-of-function experiments that target the role of Notch signaling and basic helix-loop-helix genes in inner-ear development have indicated that they can regulate mechanosensory hair cell-fate specification and their initial differentiation.  相似文献   

13.
Maintenance of the shape and diameter of biological tubules is a critical task in the development and physiology of all metazoan organisms. We have cloned the exc-9 gene of Caenorhabditiselegans, which regulates the diameter of the single-cell excretory canal tubules. exc-9 encodes a homologue of the highly expressed mammalian intestinal LIM-domain protein CRIP, whose function has not previously been determined. A second well-conserved CRIP homologue functions in multiple valves of C. elegans. EXC-9 shows genetic interactions with other EXC proteins, including the EXC-5 guanine exchange factor that regulates CDC-42 activity. EXC-9 and its nematode homologue act in polarized epithelial cells that must maintain great flexibility at their apical surface; our results suggest that CRIPs function to maintain cytoskeletal flexibility at the apical surface.  相似文献   

14.
  相似文献   

15.
16.
  相似文献   

17.
The inner ear anatomy of cetaceans, now more readily accessible by means of nondestructive high‐resolution X‐ray computed tomographic (CT) scanning, provides a window into their acoustic abilities and ecological preferences. Inner ear labyrinths also may be a source for additional morphological characters for phylogenetic analyses. In this study, we explore digital endocasts of the inner ear labyrinths of representative species of extinct and extant porpoises (Mammalia: Cetacea: Phocoenidae), a clade of some of the smallest odontocete cetaceans, which produce some of the highest‐frequency clicks for biosonar and communication. Metrics used to infer hearing ranges based on cochlear morphology indicate that all taxa considered could hear high‐frequency sounds, thus the group had already acquired high‐frequency hearing capabilities by the Miocene (9–11 Mya) at the latest. Vestibular morphology indicates that extant species with pelagic preferences have similarly low semicircular canal deviations from 90°, values indicating more sensitivity to head rotations. Species with near‐shore preferences have higher canal deviation values, indicating less sensitivity to head rotations. Extending these analyses to the extinct species, we demonstrate a good match between those predicted to have coastal (such as Semirostrum cerutti) preferences and high canal deviation values. We establish new body length relationships based on correlations with inner ear labyrinth volume, which can be further explored among other aquatic mammals to infer body size of specimens consisting of fragmentary material.  相似文献   

18.
Development of the cartilaginous capsule of the inner ear is dependent on interactions between otic epithelium and its surrounding periotic mesenchyme. During these tissue interactions, factors endogenous to the otic epithelium influence the differentiation of the underlying periotic mesenchyme to form a chondrified otic capsule. We report the localization of Sonic hedgehog (Shh) protein and expression of the Shh gene in the tissues of the developing mouse inner ear. We demonstrate in cultures of periotic mesenchyme that Shh alone cannot initiate otic capsule chondrogenesis. However, when Shh is added to cultured periotic mesenchyme either in combination with otic epithelium or otic epithelial-derived fibroblast growth factor (FGF2), a significant enhancement of chondrogenesis occurs. Addition of Shh antisense oligonucleotide (AS) to cultured periotic mesenchyme with added otic epithelium decreases levels of endogenous Shh and suppresses the chondrogenic response of the mesenchyme cells, while supplementation of Shh AS-treated cultures with Shh rescues cultures from chondrogenic inhibition. We demonstrate that inactivation of Shh by targeted mutation produces anomalies in the developing inner ear and its surrounding capsule. Our results support a role for Shh as a regulator of otic capsule formation and inner ear development during mammalian embryogenesis.  相似文献   

19.
20.
Developmental biologists distinguish between mosaic embryos, in which the removal of a cell or group of cells results in a defective adult, andregulative embryos, in which the adult appears normal in spite of such removal. I suggest that the mosaic/regulative distinction is best viewed by contrastingwithin-cell signals(i.e., a cell can develop autonomously, perhaps on the basis of instructions derived from the mother) againstbetween-cell signals (i.e., development, and the origin of form and shape, is based on intercellular communication). This distinction is not rigid; the same embryo can make use of both within-cell and between-cell signals. During evolution, signalling between cells is likely to have become advantageous as organisms increased in size. However, the fact that an embryo displays regulative behaviour may be an automatic consequence of the way it develops rather than an evolved adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号