首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Expression of four major reprogramming transgenes, including Oct4, Sox2, Klf4 and c-myc, in somatic cells enables them to have pluripotency. These cells are iPSC (induced pluripotent stem cell) that currently show the greatest potential for differentiation into cells of the three germ lineages. One of the issues facing the successful reprogramming and clinical translation of iPSC technology is the high rate of apoptosis after the reprogramming process. Reprogramming is a stressful process, and the p53 apoptotic pathway plays a negative role in cell growth and self-renewal. Apoptosis via the p53 pathway serves as a major barrier in nuclear somatic cell reprogramming during iPSC generation. DHEA (dehydroepiandrosterone) is an abundant steroid that is produced at high levels in the adrenal cells, and withdrawal of DHEA increases the levels of p53 in the epithelial and stromal cells, resulting in increased levels of apoptotic cells; meanwhile, DHEA decreases cellular apoptosis. DHEA could improve the efficacy of reprogramming yield due to a decrease in apoptosis via the p53 pathway and an increase in cell viability.  相似文献   

3.
4.
In order to effectively combat pandemic influenza threats, there is a need for more rapid and robust vaccine production methods. In this article, we demonstrate E. coli‐based cell‐free protein synthesis (CFPS) as a method to rapidly produce domains from the protein hemagglutinin (HA), which is present on the surface of the influenza virus. The portion of the HA coding sequence for the “head” domain from the 2009 pandemic H1N1 strain was first optimized for E. coli expression. The protein domain was then produced in CFPS reactions and purified in soluble form first as a monomer and then as a trimer by a C‐terminal addition of the T4 bacteriophage foldon domain. Production of soluble trimeric HA head domain was enhanced by introducing stabilizing amino acid mutations to the construct in order to avoid aggregation. Trimerization was verified using size exclusion HPLC, and the stabilized HA head domain trimer was more effectively recognized by antibodies from pandemic H1N1 influenza vaccine recipients than was the monomer and also bound to sialic acids more strongly, indicating that the trimers are correctly formed and could be potentially effective as vaccines. Biotechnol. Bioeng. 2012; 109: 2962–2969. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
8.
目的:克隆、表达及纯化带有穿膜结构域的转录因子蛋白Oct4和Sox2。方法:根据GenBank中的Oct4和Sox2基因序列,在其3’端引入穿膜结构域11R,并在其两端引入NdeⅠ和XhoⅠ酶切位点,进行全基因合成;将目的基因克隆至pET41a载体,进行酶切鉴定及测序;将所获阳性重组质粒转化感受态大肠杆菌BL21(DE3),经IPTG诱导表达后,对表达产物进行Western印迹鉴定;最后用Ni-NTA亲和层析柱对所获目的蛋白进行纯化。结果:质粒酶切鉴定结果表明带有目的基因的重组质粒构建成功;SDS-PAGE结果显示有相对分子质量约42×103和38×103的特异性蛋白表达条带,经Western印迹证实为目的蛋白;用Ni-NTA亲和层析柱纯化后,得到均一的Oct4和Sox2目的蛋白。结论:得到带有穿膜结构域的转录因子融合蛋白Oct4和Sox2,为今后安全开展诱导性多能干细胞研究奠定了基础。  相似文献   

9.
Recent developments in 3D cultures exploiting the self‐organization ability of pluripotent stem cells have enabled the generation of powerful in vitro systems termed brain organoids. These 3D tissues recapitulate many aspects of human brain development and disorders occurring in vivo. When combined with improved differentiation methods, these in vitro systems allow the generation of more complex “assembloids,” which are able to reveal cell diversities, microcircuits, and cell–cell interactions within their 3D organization. Here, the ways in which human brain organoids have contributed to demystifying the complexities of brain development and modeling of developmental disorders is reviewed and discussed. Furthermore, challenging questions that are yet to be addressed by emerging brain organoid research are discussed.  相似文献   

10.
李令杰  金颖 《生命科学》2009,(5):631-638
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新和发育多能性的特点,在再生医学研究中有着广泛的应用前景。ES细胞多能性和自我更新的维持受到复杂的调控,涉及到转录调控、信号转导以及表观遗传调控等多个方面。转录因子Oct4、Sox2、Nanog在其中扮演着非常重要的角色,对干细胞特性的维持必不可少。本文着重讨论了这些关键转录因子的研究进展。这些研究促进了对ES细胞自我更新机制的深入理解,并为进一步的临床研究提供了理论基础。  相似文献   

11.
12.
13.
14.
自2006年诱导多能干细胞(iPS)技术诞生以来,采用病毒等载体进行的诱导方法已取得了成功,但是其致瘤性的影响限制了病毒载体的推广与应用,而采用非病毒载体诱导iPS细胞成为研究的热点. 本研究通过两个启动子的独立启动,构建了带有绿色荧光标记的OCT4/SOX2共表达诱导载体(pOct4/Sox2-EGFP). 将该载体转染HEK 293FT 细胞后,阳性克隆明显表达绿色荧光,并通过RT-PCR,免疫荧光等方法证明其中的转录因子OCT4和SOX2能在转染细胞中高效表达,同时诱导受体细胞中内源NANOG的转录表达. 本研究说明OCT4/SOX2共表达载体能激活NANOG基因的内源表达,暗示着非病毒不整合载体pOct4/Sox2-EGFP本身或与其它转录因子和小分子结合可用于诱导成体细胞的重编程. 因此,本研究为下一步应用质粒载体诱导体细胞重编程为iPS细胞的研究奠定了工作基础.  相似文献   

15.
16.
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell‐like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real‐time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration‐free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.  相似文献   

17.
18.
The challenges involved in producing sufficient quantities of aquaporins for precise biophysical characterization have limited our knowledge of this important class of molecules. This article describes a cell‐free protein synthesis method for producing high concentrations of the E. coli water transporter, aquaporin Z (AqpZ), in synthetic liposomes. To our knowledge, this is the first report of in vitro synthesis of a membrane protein directly into synthetic liposomes with verified function, (i.e., transport activity and selectivity). Titration of DOPC lipid vesicles added to the cell‐free reaction show that production yields of active AqpZ are dependent on the concentration of DOPC lipid vesicles added to the cell‐free reaction, with 224 ± 24 lipids required per aquaporin monomer. Supplementation of the signal recognition particle receptor (FtsY) to the cell‐free reaction increases production of vesicle‐associated AqpZ but not active AqpZ. Cell‐free reactions using 7 mg/mL lipids that were not supplemented with FtsY produced 507 ± 11 µg/mL of vesicle‐associated AqpZ that exhibited a specific water transport activity of (2.2 ± 0.3) × 10?14 cm3 s?1 monomer?1. Proteinase K protection, activation energy determination, and selectivity against glycerol and urea transport also confirmed the production of correctly folded AqpZ. This technique is capable of producing milligram quantities of aquaporin that can be readily assayed for function, facilitating biophysical characterization and high‐throughput analysis. Biotechnol. Bioeng. 2009; 104: 40–49 © 2009 Wiley Periodicals, Inc.  相似文献   

19.
20.
The human dopamine D2 receptor long isoform (D2L) has significant implications in neurological and neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Detailed structural knowledge of this receptor is limited owing to its highly hydrophobic nature, which leads to protein aggregation and host toxicity when expressed in cellular systems. The newly emerging field of cell‐free protein expression presents numerous advantages to overcome these challenges. This system utilizes protein synthesis machinery and exogenous DNA to synthesize functional proteins outside of intact cells. This study utilizes two different cell‐free systems for the synthesis of human dopamine D2L receptor. These include the Escherichia coli lysate‐based system and the wheat‐germ lysate‐based system. The bacterial cell‐free method used pET 100/D‐TOPO vector to synthesize hexa‐histidine‐tagged D2L receptor using a dialysis bag system; the resulting protein was purified using nickel‐nitrilotriacetic acid affinity resin. The wheat germ system used pEU–glutathione‐S‐transferase (GST) vector to synthesize GST‐tagged D2L receptor using a bilayer translation method; the resulting protein was purified using a GST affinity resin. The presence and binding capacity of the synthesized D2L receptor was confirmed by immunoblotting and radioligand competition assays, respectively. Additionally, in‐gel protein sequencing via Nano LC‐MS/MS was used to confirm protein synthesis via the wheat germ system. The results showed both systems to synthesize microgram quantities of the receptor. Improved expression of this highly challenging protein can improve research and understanding of the human dopamine D2L receptor. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:601–608, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号