首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We developed an alternative patterning technique which is capable of producing both topographic and biochemical features for cell culture studies. This technique is based on microaspiration induced with a degassed poly (dimethylsiloxane) (PDMS) mold. After degassing in a rough vacuum chamber and placed on a sample surface, liquid solution can be aspired through channels and cavities created in the PDMS mold. Depending on the composition of the solution and the associated drying or incubation processes, a variety of surface patterns can be produced without applying external pressure. For demonstration, we fabricated agarose gel microwells and biomolecule patterns either on a glass plate or in a cell culture Petri dish, both applicable for cell culture studies. Biotechnol. Bioeng. 2010. 105: 854–859. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Responding to the need of creating an accurate and controlled microenvironment surrounding the cell while meeting the requirements for biological processes or pharmacological screening tests, we aimed at designing and developing a microscaled culture system suitable for analyzing the synergic effects of extracellular matrix proteins and soluble environments on cell phenotype in a high‐throughput fashion. We produced cell arrays deposing micrometer‐scale protein islands on hydrogels using a robotic DNA microarrayer, constrained the culture media in a droplet‐like volume and developed a suitable perfusion system. The droplet‐confined cell arrays were used either with conventional culture methods (batch operating system) or with automated stable and constant perfusion (steady‐state operating system). Mathematical modeling assisted the experimental design and assessed efficient mass transport and proper fluidodynamic regimes. Cells cultured on arrayed islands (500 μm diameter) maintained the correct phenotype both after static and perfused conditions, confirmed by immunostaining and gene expression analyses through total RNA extraction. The mathematical model, validated using a particle tracking experiment, predicted the constant value of velocities over the cell arrays (less than 10% variation) ensuring the same mass transport regime. BrdU analysis on an average of 96 cell spots for each experimental condition showed uniform expression inside each cell island and low variability in the data (average of 13%). Perfused arrays showed longer doubling times when compared with static cultures. In addition, perfused cultures showed a reduced variability in the collected data, allowing to detect statistically significant differences in cell behavior depending on the spotted ECM protein. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
4.
One important application of tissue engineering is to provide novel in vitro models for cell‐based assays. Perfusion microbioreactor array provides a useful tool for microscale tissue culture in parallel. However, high‐throughput data generation has been a challenge. In this study, a 4 × 4 array of perfusion microbioreactors was developed for plate‐reader compatible, time‐series quantification of cell proliferation, and cytotoxicity assays. The device was built through multilayer soft lithography. Low‐cost nonwoven polyethylene terephthalate fibrous matrices were integrated as modular tissue culture scaffolds. Human colon cancer HT‐29 cells with stable expression of enhanced green fluorescent protein were cultured in the device with continuous perfusion and reached a cell density over 5 × 107 cells/mL. The microbioreactor array was used to test a chemotherapeutic drug 5‐FU for its effect on HT‐29 cells in continuous perfusion 3D culture. Compared with conventional 2D cytotoxicity assay, significant drug resistance was observed in the 3D perfusion culture. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
A Merkel cell‐neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch‐sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell‐neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell‐neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co‐culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell‐neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co‐cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell‐neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament‐H‐positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell‐neurite complex can be observed under a microscope using our organotypic co‐culture method.  相似文献   

6.
Bioartificial liver devices (BALs) are extracorporeal systems designed to temporarily bridge patients until a suitable donated liver is available for transplantation and also have value for pharmaceutical testing applications. Yet critical issues exist that limit the functional performance of their current designs. One of these concerns scale up issues connected to oxygen (O2) delivery to the cells housed within their three‐dimensional (3D) configurations, and its consequences to device performance. As primary blood substitute candidates with extraordinarily high O2 capacity, perfluorocarbons (PFCs) offer hope as one strategy for addressing the O2 delivery issue encountered when scaling up the tissue space of current BAL designs. This study utilizes a PFC‐based second‐generation O2 carrier OXYCYTE®, as an additive to regular nutrient medium, for augmenting O2 delivery in a customized 3D tissue assembly system. The results demonstrate that the addition of PFCs significantly increases the O2 capacity of regular medium and that net cytochrome P450 activity levels are considerably increased under flow in PFC‐treated systems, as compared to controls. This work thus clarifies the benefits of using PFCs to enhance the functional performance of 3D liver systems. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:718–726, 2013  相似文献   

7.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

8.
Abstract. Non-differentiated tissue cultures (calli) of tobacco were found to be more sensitive to chloramphenicol (CAP) than differentiated tissues (shoots). The difference is especially manifested in darkness and at an irradiation regime lacking u.v. and blue light. Photodegradation of CAP solutions was demonstrated at moderate light fluence rates (6–15 Wm−2). The evidence indicates that the final products of photodegradation may be toxic or non-toxic according to the irradiation regime. The implication of the present findings in establishing a selection system for resistance to chemicals, and especially CAP, using plant tissue cultures, is discussed.  相似文献   

9.
We describe a systematic approach to model CHO metabolism during biopharmaceutical production across a wide range of cell culture conditions. To this end, we applied the metabolic steady state concept. We analyzed and modeled the production rates of metabolites as a function of the specific growth rate. First, the total number of metabolic steady state phases and the location of the breakpoints were determined by recursive partitioning. For this, the smoothed derivative of the metabolic rates with respect to the growth rate were used followed by hierarchical clustering of the obtained partition. We then applied a piecewise regression to the metabolic rates with the previously determined number of phases. This allowed identifying the growth rates at which the cells underwent a metabolic shift. The resulting model with piecewise linear relationships between metabolic rates and the growth rate did well describe cellular metabolism in the fed‐batch cultures. Using the model structure and parameter values from a small‐scale cell culture (2 L) training dataset, it was possible to predict metabolic rates of new fed‐batch cultures just using the experimental specific growth rates. Such prediction was successful both at the laboratory scale with 2 L bioreactors but also at the production scale of 2000 L. This type of modeling provides a flexible framework to set a solid foundation for metabolic flux analysis and mechanistic type of modeling. Biotechnol. Bioeng. 2017;114: 785–797. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

10.
Hydrogel‐based bottom‐up tissue engineering depends on assembly of cell‐laden modules for complex three‐dimensional tissue reconstruction. Though sheet‐like hydrogel modules enable rapid and controllable assembly, they have limitations in generating spatial microenvironments and mass transport. Here, we describe a simple method for forming large‐scale cell‐hydrogel assemblies via stacking cell‐embedded mesh‐like hydrogel sheets to create complex macroscale cellular scaffolds. Freestanding stacked hydrogel sheets were fabricated for long‐term cell culturing applications using a facile stacking process where the micropatterned hydrogel sheets (8.0 mm × 8.7 mm) were aligned using a polydimethylsiloxane drainage well. The stacked hydrogel sheets were precisely aligned so that the openings could facilitate mass transport through the stacked sheets. Despite the relatively large height of the stacked structure (400–700 μm), which is larger than the diffusion limit thickness of 150–200 μm, the freestanding cell‐ydrogel assemblies maintained cell viability and exhibited enhanced cellular function compared with single hydrogel sheets. Furthermore, a three‐dimensional co‐culture system was constructed simply by stacking different cell‐containing hydrogel sheets. These results show that stacked hydrogel sheets have significant potential as a macroscale cell‐culture and assay platform with complex microenvironments for biologically relevant in vitro tissue‐level drug assays and physiological studies.  相似文献   

11.
Rapid patterning has been observed in confined 2-D cultures of Dictyostelium discoideum Ax-2 cells as an outer dark zone and a inner light zone. The width of outer zone was usually approximately100 microm, irrespective of the size of cell masses under atmospheric conditions. The width of the outer zone, however, changed depending on external O2 concentrations and reached up to 250 microm at 100% O2. A clear regional difference in tetramethyl rhodamine methyl ester (TMRM) staining was noticed between the outer zone and the inner zone: the inner zone was more strongly stained with TMRM than the outer zone, which faced the air. Using inhibitors of oxidative phosphorylation (dinitrophenol (DNP) or NaN3) and a specific inhibitor of CN-resistant respiration (benzohydroxamic acid (BHAM)), it has been demonstrated that the outer zone is basically formed by the O2 threshold for oxidative phosphorylation, while the inner cells mainly perform cyanide-resistant respiration. When cells around the early mound stage (just before prestalk and prespore differentiation) were cultured as 2-D cell masses, ecmA-expressing cells (pstA cells), ecmB-expressing cells (pstB cells) and D19-expressing cells (prespore; psp cells), arose in a position-dependent manner in the outer zone. In the inner zone, cell motility seemed to be markedly impaired and neither prestalk nor prespore differentiation occurred. In addition, once-differentiated prespore cells were found to dedifferentiate rapidly in the inner zone. The reason for dedifferentiation as well as for failure of cells to differentiate in the inner zone is discussed with reference to O2 radicals.  相似文献   

12.
13.
Very high cell densities and optimal vascularization characterize among others organs and tissues in vivo. In order to study organ-specific functions in vitro or to make use of them in medical devices/treatments in the future, this natural architecture should be rebuilt. An important aspect in this context is the appropriate ratio of medium to cell volume being so far not optimally reestablished in most of the currently available in vitro systems. To improve such culture conditions, we constructed a microstructure to culture hepatocytes and (without any addition of extracellular matrix material) characterized liver tissue in the form of evenly sized aggregates. The liver-specific differentiation status of such aggregates was monitored by their ability to perform CYP450 dependent xenobiotic metabolism along with the measurement of albumin secretion. Freshly isolated adult rat hepatocytes show an initial loss of total CYP450 content and of associated activities (mixed function oxidases). However, in the aggregate system, this level did not decrease further but remained stable or even increased throughout the culture period of 10-13 days. The CYP450 dependent metabolism of the hepatocytes is able to respond to classic inducing agents. The described culture efficiently supports liver-specific functions of adult rat hepatocytes and seems to be suited not only for use in an extracorporeal liver device but also for the formation of evenly sized small aggregates to be of use in transplantation of differentiated liver tissue. Moreover, after design variations, the microstructure can be applied for functional analysis of metabolically active hepatocytes as well as for toxicological and pharmacological validation.  相似文献   

14.
15.
16.
E. coli (P450pyrTM‐GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g?1 cdw) for the biohydroxylation of N‐benzylpyrrolidine 1 and a GDH activity of 106 U g?1 protein. The E. coli cells were used as efficient biocatalysts for highly regio‐ and stereoselective hydroxylation of alicyclic substrates at non‐activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N‐benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio‐ and stereoselectivity, giving (S)‐N‐benzyl‐3‐hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM‐GDH) was found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpyrrolidin‐2‐one 3 , improving the regioselectivity from 90% of the wild‐type P450pyr to 100% and giving (S)‐N‐benzyl‐4‐hydroxylpyrrolidin‐2‐one 4 in 99% ee as the sole product. A high activity of 15.5 U g?1 cdw was achieved and (S)‐ 4 was obtained in 19.4 mM. E. coli (P450pyrTM‐GDH) was also found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpiperidin‐2‐one 5 , increasing the ee of the product (S)‐N‐benzyl‐4‐hydroxy‐piperidin‐2‐one 6 to 94% from 33% of the wild‐type P450pyr. A high activity of 15.8 U g?1 cdw was obtained and (S)‐ 6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM‐GDH) represents the most productive system known thus far for P450‐catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM‐GDH) provide with simple and useful syntheses of (S)‐ 2 , (S)‐ 4 , and (S)‐ 6 that are valuable pharmaceutical intermediates and difficult to prepare. Biotechnol. Bioeng. 2013; 110: 363–373. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
In nature, many enzymes participating in multienzyme reactions are often assembled to enhance efficiencies of multiple reactions. Therefore, much attention has been focused on self‐assembly of multiple enzymes fused with a protein/peptide that interacts with a specific protein to enhance artificial multienzyme reactions. Sulfolobus solfataricus proliferating cell nuclear antigen (PCNA) is a ring‐shaped symmetric heterotrimer consisting of PCNA1, PCNA2 and PCNA3. Multiple enzymes can be co‐localized on the PCNA ring by fusing them to the C‐termini of the three PCNA subunits. However, an advantage of the specific non‐covalent complex formation is inextricably associated with the disadvantage of its concentration‐dependent dissociation. In this study, disulfide bonds were introduced between the PCNA subunits by Cys substitution at the sites neighboring the interface for heterotrimerization. Selective intersubunit disulfide bond formation between PCNA1 and PCNA3 and between PCNA2 and PCNA3 by a natural oxidizing reagent successfully stabilized an artificial multienzyme complex, which is composed of a bacterial cytochrome P450 and its two redox partner proteins. The covalent stabilization of the multienzyme complex enhanced its cytochrome P450 activity because of the absence of inactive dissociated components. Biotechnol. Bioeng. 2013; 110: 1858–1864. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
In this study, we have investigated the cheese starter culture as a microbial community through a question: can the metabolic behaviour of a co‐culture be explained by the characterized individual organism that constituted the co‐culture? To address this question, the dairy‐origin lactic acid bacteria Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus and Leuconostoc mesenteroides, commonly used in cheese starter cultures, were grown in pure and four different co‐cultures. We used a dynamic metabolic modelling approach based on the integration of the genome‐scale metabolic networks of the involved organisms to simulate the co‐cultures. The strain‐specific kinetic parameters of dynamic models were estimated using the pure culture experiments and they were subsequently applied to co‐culture models. Biomass, carbon source, lactic acid and most of the amino acid concentration profiles simulated by the co‐culture models fit closely to the experimental results and the co‐culture models explained the mechanisms behind the dynamic microbial abundance. We then applied the co‐culture models to estimate further information on the co‐cultures that could not be obtained by the experimental method used. This includes estimation of the profile of various metabolites in the co‐culture medium such as flavour compounds produced and the individual organism level metabolic exchange flux profiles, which revealed the potential metabolic interactions between organisms in the co‐cultures.  相似文献   

19.
In this investigation, we examined the effects of insulin on gene induction responsiveness in primary rat hepatocytes. Cells were cultured for 72 hours either in the absence or presence of 1 μM insulin and then exposed to increasing concentrations of phenobarbital (PB; 0.01–3.5 mM). Culturing in the absence of insulin produced 1.5–2‐fold increases in the induction magnitude of CYP2B1 and CYP2B2 mRNA expression resulting from PB exposures, without altering the bell‐shaped dose‐response curve characteristic of this agent. However, for the CYP3A1 gene, insulin removal led to a pronounced shift in both the PB‐induction magnitude and dose‐response relationships of the induction response, with higher levels of CYP3A1 expression resulting from exposures to lower concentrations of inducer. Insulin removal also reduced the time required to attain maximal induction of CYP2B1/2 and CYP3A1 gene expression. The insulin effects were not specific for PB induction, as insulin deprivation similarly enhanced both dexamethasone‐ and β‐naphthoflavone‐inducible CYP3A1 and CYP1A1 expression profiles, respectively. In contrast, the level of albumin mRNA expression was reduced considerably in cells deprived of insulin. We conclude that insulin is an important regulator of inducible and liver‐specific gene expression in primary rat hepatocytes. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 1–9, 1999  相似文献   

20.
VBNC Vibrio cholerae O139 VC‐280 obtained by incubation in 1% solution of artificial sea water IO at 4°C for 74 days converted to the culturable state when co‐cultured with CHO cells. Other eukaryotic cell lines, including HT‐29, Caco‐2, T84, HeLa, and Intestine 407, also supported conversion of VBNC cells to the culturable state. Conversion of VBNC V. cholerae O1 N16961 and V. cholerae O139 VC‐280/pG13 to the culturable state, under the same conditions, was also confirmed. When VBNC V. cholerae O139 VC‐280 was incubated in 1% IO at 4°C for up to 91 days, the number of cells converted by co‐culture with CHO cells declined with each additional day of incubation and after 91 days conversion was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号