首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The helix content of a series of peptides containing single substitutions of the 20 natural amino acids in a new designed host sequence, succinyl-YSEEEEKAKKAXAEEAEKKKK-NH2, has been determined using CD spectroscopy. This host is related to one previously studied, in which triple amino acid substitutions were introduced into a background of Glu-Lys blocks completely lacking alanine. The resulting free energies show that only Ala and Glu- prove to be helix stabilizing, while all other side chains are neutral or destabilizing. This agrees with results from studies of alanine-rich peptide modela, but not the previous Glu-Lys block oligomers in which Leu and Met also stabilize helix. The helix propensity scale derived from the previous block oligomers correlated well with the frequencies of occurrence of different side chains in helical sequences of proteins, whereas the values from the present series do not. The role of context in determining scales of helix propensity values is discussed, and the ability of algorithms designed to predict helix structure from sequence is compared.  相似文献   

2.
The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the α-helices and Β-strands of proteins than within the more flexible linker regions (‘turns’ and ‘loops’) connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the α-helix and the (Β-strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures.  相似文献   

3.
Ashish Shelar  Manju Bansal 《Proteins》2014,82(12):3420-3436
α‐helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α‐helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C‐termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α‐helices in a high‐resolution dataset of integral α‐helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C‐termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near‐helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420–3436. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
5.
Structures of (Pro‐Pro‐Gly)4‐Xaa‐Yaa‐Gly‐(Pro‐Pro‐Gly)4 (ppg9‐XYG) where (Xaa, Yaa) = (Pro, Hyp), (Hyp, Pro) or (Hyp, Hyp) were analyzed at high resolution using synchrotron radiation. Molecular and crystal structures of these peptides are very similar to those of the (Pro‐Pro‐Gly)9 peptide. The results obtained in this study, together with those obtained from related compounds, indicated the puckering propensity of the Hyp in the X position: (1) Hyp(X) residues involved in the Hyp(X):Pro(Y) stacking pairs prefer the down‐puckering conformation, as in ppg9‐OPG, and ppg9‐OOG; (2) Hyp(X) residues involved in the Hyp(X):Hyp(Y) stacking pairs prefer the up‐puckering conformation if there is no specific reason to adopt the down‐puckering conformation. Water molecules in these peptide crystals are classified into two groups, the 1st and 2nd hydration waters. Water molecules in the 1st hydration group have direct hydrogen bonds with peptide oxygen atoms, whereas those in the 2nd hydration group do not. Compared with globular proteins, the number of water molecules in the 2nd hydration shell of the ppg9‐XYG peptides is very large, likely due to the unique rod‐like molecular structure of collagen model peptides. In the collagen helix, the amino acid residues in the X and Y positions must protrude outside of the triple helix, which forces even the hydrophobic side chains, such as Pro, to be exposed to the surrounding water molecules. Therefore, most of the waters in the 2nd hydration shell are covering hydrophobic Pro side chains by forming clathrate structures. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 361–372, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
This article describes a computational study on dimeric zinc porphyrin tweezer complexes with primary/secondary amines and secondary alcohols that validates the use of Optimized Potential for Liquid Simulations (OPLS‐2005) as the lead computational choice for assisting the tweezer methodology in the absolute configurational assignment of organic compounds. A supramolecular, microscale approach known as the tweezer method has been widely applied in the past decade for determining the absolute configuration of chiral substrates that are difficult to study by other readily available methods. The method relies on a host/guest complexation mechanism between a porphyrin tweezer moiety and a substrate, after its conversion into a bidentate conjugate. The formation of 1:1 complexes is a stereodifferentiating process: upon complexation, the originally achiral tweezer adopts a preferential interporphyrin helicity, dictated by the absolute configuration of the chiral substrate. By correctly predicting the sign of the interporphyrin helicity in the complex, OPLS‐2005 provides a correlation between the observed circular dichroism (CD) signal and the absolute configuration of the substrate. It also offers a great degree of insight into the structural factors responsible for chiral recognition and the amplitude of exciton couplets. Moreover, the preferential binding sites between the Zn‐tweezer and secondary amine conjugates were revealed by using the new computational approach. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Short alphahelical peptide sequences were stabilized through Glaser‐Hay couplings of propargylated l ‐ and/or d ‐serine residues at positions i and i+7. NMR analysis confirmed a full stabilization of the helical structure when a d ‐Ser (i), l ‐Ser (i+7) combination was applied. In case two l ‐Ser residues were involved in the cyclization, the helical conformation is disrupted outside the peptide's macrocycle.  相似文献   

8.
Acrolein is an α,β‐unsaturated aldehyde that is a major environmental pollutant, as well as a product of cellular metabolism. DNA bases react with acrolein to form two regioisomeric exocyclic guanine adducts, namely γ‐hydroxy‐propanodeoxyguanosine (γ‐OH‐PdG) and its positional isomer α‐hydroxy‐propanodeoxyguanosine (α‐OH‐PdG). The γ‐OH‐PdG isomer adopts a ring‐opened conformation with minimal structural perturbation of the DNA host duplex. Conversely, the α‐OH‐PdG isomer assumes a ring‐closed conformation that significantly disrupts Watson‐Crick base‐pair alignments within the immediate vicinity of the damaged site. We have employed a combination of calorimetric and spectroscopic techniques to characterize the thermodynamic origins of these lesion‐induced structural alterations. Specifically, we have assessed the energetic impact of α‐OH‐PdG centered within an 11‐mer duplex by hybridizing the adduct‐containing oligonucleotide with its complementary strand harboring a central base N [where N = C or A], yielding a pair of duplexes containing the nascent lesion (α‐OH‐PdG·C) or mismatched adduct (α‐OH‐PdG·A), respectively. Our data reveal that the nascent lesion is highly destabilizing, whereas its mismatched counterpart partially ameliorates α‐OH‐PdG‐induced destabilization. Collectively, our data provide energetic characterizations of the driving forces that modulate error‐free versus error‐prone DNA translesion synthesis. The biological implications of our findings are discussed in terms of energetically probing acrolein‐mediated mutagenicity versus adduct‐induced genotoxicity. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 370–382, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
RNA folding free energy change parameters are widely used to predict RNA secondary structure and to design RNA sequences. These parameters include terms for the folding free energies of helices and loops. Although the full set of parameters has only been traditionally available for the four common bases and backbone, it is well known that covalent modifications of nucleotides are widespread in natural RNAs. Covalent modifications are also widely used in engineered sequences. We recently derived a full set of nearest neighbor terms for RNA that includes N6-methyladenosine (m6A). In this work, we test the model using 98 optical melting experiments, matching duplexes with or without N6-methylation of A. Most experiments place RRACH, the consensus site of N6-methylation, in a variety of contexts, including helices, bulge loops, internal loops, dangling ends, and terminal mismatches. For matched sets of experiments that include either A or m6A in the same context, we find that the parameters for m6A are as accurate as those for A. Across all experiments, the root mean squared deviation between estimated and experimental free energy changes is 0.67 kcal/mol. We used the new experimental data to refine the set of nearest neighbor parameter terms for m6A. These parameters enable prediction of RNA secondary structures including m6A, which can be used to model how N6-methylation of A affects RNA structure.  相似文献   

10.
Mussel foot proteins (mfps) mediate fouling by the byssal holdfast and have been extensively investigated as models for versatile polymer‐mediated underwater adhesion and coatings. However, insights into the structural properties of mfps have lagged far behind the nanomechanical advances, owing in part to the inability of these proteins to crystallize as well as their limited solubility. Here, solution secondary structures of mfp‐1, mfp‐2, and mfp‐3, localized in the mussel byssal cuticle, adhesive plaque, and plaque–substratum interface, respectively, were investigated using circular dichroism. All three have significant extended coil solution structure, but two, mfp‐1 and mfp‐2, appear to have punctuated regions of structure separated by unstructured domains. Apart from its punctuated distribution, the structure in mfp‐1 resembles other structural proteins such as collagen and plant cell‐wall proteins with prominent polyproline II helical structure. As in collagen, PP II structure of mfp‐1 is incrementally disrupted by increasing the temperature and by raising pH. However, no recognizable change in mfp‐1's PP II structure was evident with the addition with Ca2+ and Fe3+. In contrast, mfp‐2 exhibits Ca2+‐ and disulfide‐stabilized epidermal growth factor‐like domains separated by unstructured sequence. Mfp‐2 showed calcium‐binding ability. Bound calcium in mfp‐2 was not removed by chelation at pH 5.5, but it was released upon reduction of disulfide bonds. Mfp‐3, in contrast, appears to consist largely of unstructured extended coils.  相似文献   

11.
The purification and characterization of psychro‐thermoalkalistable protease from psychrotrophic Pseudomonas putida isolate is being reported for the first time. A ~53 kDa protease was purified 21.4‐folds with 57.2% recovery by ultrafiltration and hydrophobic interaction chromatography. Kinetic analyses revealed the Km and Vmax to be 1.169 mg mL?1 and 0.833 mg mL?1 min?1, respectively. The kcat value of 3.05 × 102 s?1 indicated high affinity and catalytic efficiency toward casein. The protease was most active at pH 9.5 and 40°C, with 100% stability in pH and temperature range of 6.0–11.0 and 10–40°C, respectively. Presence of Zn2+ increased the thermostability of protease (at 70°C) by 433%. Ethylene diamine tetra acetic acid (EDTA) and 1,10‐phenanthroline were inhibitory, whereas phenyl methyl sulfonyl fluoride (PMSF), p‐chloro mercuric benzoate (PCMB), and β‐mercaptoethanol were ineffective, revealing the enzyme to be a metalloprotease. Zinc, calcium, iron, nickel, and copper at 1 mM increased the enzyme activity (102–134%). Complete reversion of enzyme inhibition (caused by Ethylene diamine tetra acetic acid [EDTA]) by Zn2+ affirmed this enzyme as zinc‐dependent metalloprotease. At 0.1% concentration, Triton X‐100 and Tween 80 slightly increased, while SDS and H2O2 reduced the protease activity. In the presence of 0.1% commercial detergents, the enzyme was fairly stable (54–81%). In the presence of organic solvent, the protease was remarkably stable exhibiting 72–191% activities. In contrast, savinase exhibited good stability in the presence of hydrophilic solvents, while chymotrypsin showed elevated activities with benzene, toluene, and xylene only. Circular dichroism analysis revealed the protease as a β‐rich protein, having large fraction (~40%) of β‐sheets. Presence of different environmental conditions altered the β‐content, which accordingly affected the protease activity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

12.
A peptide fragment corresponding to the third helix of Staphylococcus Aureus protein A, domain B, was chosen to study the effect of the main‒chain direction upon secondary structure formation and stability, applying the retro‒enantio concept. For this purpose, two peptides consisting of the native (Ln) and reversed (Lr) sequences were synthesized and their conformational preferences analysed by CD and NMR spectroscopy. A combination of CD and NMR data, such as molar ellipcitity, NOE connectivities, Hα and NH chemical shifts, 3JαN coupling constants and amide temperature coefficients indicated the presence of nascent helices for both Ln and Lr in water, stabilized upon addition of the fluorinated solvents TFE and HFIP. Helix formation and stabilization appeared to be very similar in both normal and retro peptides, despite the unfavourable charge–macrodipole interactions and bad N-capping in the retro peptide. Thus, these helix stabilization factors are not a secondary structure as determined for this specific peptide. In general, the synthesis and confirmational analysis of peptide pairs with opposite main‒chain directions, normal and retro peptides, could be useful in the determination of secondary structure stabilization factors dependent on the direction. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The tumor suppresser protein p53 has been called the “guardian of the genome.” DNA damage induces p53 to either halt the cell cycle, allowing for repair, or initiate apoptosis. P53 is mutated in over 50% of human tumors and it has been proposed that many tumorigenic mutations are deleterious to p53 because they induce local unfolding. To explore this hypothesis, peptide models have been developed to study tumorigenic mutations in the H2 helix of the p53 core domain. This helix is rich with charged residues and is a key component of the DNA binding region. A 16‐residue peptide corresponding to the H2 wild‐type sequence extended with an Ala‐rich C‐terminus was synthesized and studied by 1H‐nmr (500 MHz) and CD. The nmr studies demonstrate that this peptide adopts helical structure in solution. Six additional peptides corresponding to subtle tumorigenic mutations were synthesized and CD was used to assess the relative stability of these “mutant analogues.” All six mutations studied are destabilizing relative to the wild type, with ΔΔG values in the range of 0.26 to 1.35 kcal mol−1. Surprisingly, substitution of Asp 281 with Ala resulted in a peptide with the greatest destabilization even though Ala possesses the largest helix propensity of the common 20 amino acids. Because this helix appears to be stabilized mainly by local electrostatics, we conclude that its structure is susceptible to even the most conservative mutations. These results provide support for the hypothesis that tumorigenic mutations induce local unfolding of p53. © 1999 John Wiley & Sons, Inc. Biopoly 49: 215–224, 1999  相似文献   

14.
Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature‐sensitive biomacromolecule. Previously, Val‐Pro‐Gly‐Val‐Gly peptides have been conjugated to a dendrimer for designing an elastin‐mimetic dendrimer. In this study, various elastin‐mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin‐mimetic dendrimers formed β‐turn structure by heating, which was similar to the elastin‐like peptides. The elastin‐mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin‐mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin‐mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin‐mimetic dendrimer. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 603–612, 2014.  相似文献   

15.
Cationic antimicrobial peptides have attracted increasing attention as a novel class of antibiotics to treat infectious diseases caused by pathogenic bacteria. However, susceptibility to protease is a shortcoming in their development. Cyclization is one approach to increase the proteolytic resistance of peptides. Therefore, to improve the proteolytic resistance of Polybia‐MPI, we have synthesized the MPI cyclic analogs C‐MPI‐1 (i‐to‐i+4) and C‐MPI‐2 (i‐to‐i+6) by copper(I)‐catalyzed azide–alkyne cycloaddition. Compared with MPI, C‐MPI‐1 displayed sustained antimicrobial activity and had enhanced anti‐trypsin resistance, while C‐MPI‐2 displayed no antimicrobial activity. The relationship between peptide structure and bioactivity was further investigated by probing the secondary structure of the peptides by circular dichroism. This showed that C‐MPI‐1 adopted an α‐helical structure in aqueous solution and, interestingly, had increased α‐helical conformation in 30 mM sodium dodecyl sulfate and 50% trifluoroethyl alcohol compared with MPI. C‐MPI‐2 that was not α‐helical in structure, suggesting that the propensity for α‐helix conformation may play an important role in cyclic peptide design. In addition, scanning electron microscopy, propidium iodide uptake, and membrane permeabilization assays indicated that MPI and the optimized analog C‐MPI‐1 had membrane‐active action modes, indicating that the peptides would not be susceptible to conventional resistance mechanisms. Our study provides additional insight into the influence of intramolecular cyclization at various positions on peptide structure and biological activity. In conclusion, the design and synthesis of cyclic analogs via click chemistry offer a new strategy for the development of stable antimicrobial agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α‐helix conformations. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 41–52, 2015.  相似文献   

17.
The depsipeptide Boc(1)-Leu(2)-Leu(3)-Ala(4)-Leu(5)-Leu(6)-Lac(7)-Leu(8)-Leu(9)-Lac(10)-Leu(11)-Leu(12)-Lac(13)-Leu(14)-Leu(15)-OEt(16) (1) (Boc = tert-butyloxycarbonyl, Lac = L-lactic acid residue) has been synthesized from the peptide Boc-Leu-Leu-Ala-OEt (2) and a depsipeptide, Boc-(Leu-Leu-Lac)(3)-Leu-Leu-OEt (3). Single crystals of 1 were successfully obtained and the structure has been solved by direct methods (such as Sir2002 and Shake-and-Bake). Interestingly, 1 adopts an alpha/3(10)-conjugated helix containing a kink at the junction of peptide and depsipeptide segments, Leu3-Lac7. This is significantly different from the conformation of 3, which has a straight alpha-helical structure with standard phi and psi angles. Microcrystalline CD spectra were also studied to compare structural properties of 1 and 3. The differences between alpha/3(10)- and alpha-helices appear in these CD spectra.  相似文献   

18.
The title compound of 3‐benzothiazole‐9‐ethyl carbazole was synthesized by the reaction of 3‐aldehyde‐9‐ethyl carbazole and 2‐aminothiophenol. The compound was characterized by 1H nuclear magnetic resonance (NMR) and mass spectrometry (MS). Its crystal structure was obtained and determined by single crystal X‐ray diffraction. The results showed that the crystal belongs to the orthorhombic crystal system and the cell parameters of space group P2(1)2(1)2(1) were a = 5.6626 (12) Å, b = 12.606 (3) Å, c = 22.639 (5) Å, α = 90°, β = 90°, γ = 90°, V = 1616.0 (6) Å3, Z = 4, Dc = 1.350 mg/m3. The UV–vis and fluorescence spectra were also studied preliminarily. The fluorescence spectra of the title compound with bovine serum albumin (BSA) showed that BSA could be marked with the compound and the stability constant between them was 0.82 × 107 M?1. Meanwhile, the crystal and molecule were theoretically surveyed by density functional tight‐binding (DFTB). The results showed that there was an orbital overlap for lowest unoccupied molecular orbital (LUMO) between the neighbouring molecules for the crystal, which is different from the molecule structure. It was also showed that the crystal structure is a non‐conductor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   

20.
A metagenome‐derived glycoside hydrolase family 9 enzyme with an N‐terminal immunoglobulin‐like (Ig‐like) domain, leaf‐branch compost (LC)‐CelG, was characterized and its crystal structure was determined. LC‐CelG did not hydrolyze p‐nitrophenyl cellobioside but hydrolyzed CM‐cellulose, indicating that it is endoglucanase. LC‐CelG exhibited the highest activity at 70°C and >80% of the maximal activity at a broad pH range of 5–9. Its denaturation temperature was 81.4°C, indicating that LC‐CelG is a thermostable enzyme. The structure of LC‐CelG resembles those of CelD from Clostridium thermocellum (CtCelD), Cel9A from Alicyclobacillus acidocaldarius (AaCel9A), and cellobiohydrolase CbhA from C. thermocellum (CtCbhA), which show relatively low (29–31%) amino acid sequence identities to LC‐CelG. Three acidic active site residues are conserved as Asp194, Asp197, and Glu558 in LC‐CelG. Ten of the thirteen residues that form the substrate binding pocket of AaCel9A are conserved in LC‐CelG. Removal of the Ig‐like domain reduced the activity and stability of LC‐CelG by 100‐fold and 6.3°C, respectively. Removal of the Gln40‐ and Asp99‐mediated interactions between the Ig‐like and catalytic domains destabilized LC‐CelG by 5.0°C without significantly affecting its activity. These results suggest that the Ig‐like domain contributes to the stabilization of LC‐CelG mainly due to the Gln40‐ and Asp99‐mediated interactions. Because the LC‐CelG derivative lacking the Ig‐like domain accumulated in Escherichia coli cells mostly in an insoluble form and this derivative accumulated in a soluble form exhibited very weak activity, the Ig‐like domain may be required to make the conformation of the active site functional and prevent aggregation of the catalytic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号